982 research outputs found

    Kolmogorov-Sinai entropy from recurrence times

    Full text link
    Observing how long a dynamical system takes to return to some state is one of the most simple ways to model and quantify its dynamics from data series. This work proposes two formulas to estimate the KS entropy and a lower bound of it, a sort of Shannon's entropy per unit of time, from the recurrence times of chaotic systems. One formula provides the KS entropy and is more theoretically oriented since one has to measure also the low probable very long returns. The other provides a lower bound for the KS entropy and is more experimentally oriented since one has to measure only the high probable short returns. These formulas are a consequence of the fact that the series of returns do contain the same information of the trajectory that generated it. That suggests that recurrence times might be valuable when making models of complex systems

    Precise spatio-temporal control of rapid optogenetic cell ablation with mem-KillerRed in Zebrafish

    Get PDF
    The ability to kill individual or groups of cells in vivo is important for studying cellular processes and their physiological function. Cell-specific genetically encoded photosensitizing proteins, such as KillerRed, permit spatiotemporal optogenetic ablation with low-power laser light. We report dramatically improved resolution and speed of cell targeting in the zebrafish kidney through the use of a selective plane illumination microscope (SPIM). Furthermore, through the novel incorporation of a Bessel beam into the SPIM imaging arm, we were able to improve on targeting speed and precision. The low diffraction of the Bessel beam coupled with the ability to tightly focus it through a high NA lens allowed precise, rapid targeting of subsets of cells at anatomical depth in live, developing zebrafish kidneys. We demonstrate that these specific targeting strategies significantly increase the speed of optoablation as well as fish survival

    The democratic origins of the term "group analysis": Karl Mannheim's "third way" for psychoanalysis and social science.

    Get PDF
    It is well known that Foulkes acknowledged Karl Mannheim as the first to use the term ‘group analysis’. However, Mannheim’s work is otherwise not well known. This article examines the foundations of Mannheim’s sociological interest in groups using the Frankfurt School (1929–1933) as a start point through to the brief correspondence of 1945 between Mannheim and Foulkes (previously unpublished). It is argued that there is close conjunction between Mannheim’s and Foulkes’s revision of clinical psychoanalysis along sociological lines. Current renderings of the Frankfurt School tradition pay almost exclusive attention to the American connection (Herbert Marcuse, Eric Fromm, Theodor Adorno and Max Horkheimer) overlooking the contribution of the English connection through the work of Mannheim and Foulkes

    Understanding the models of community hospital rehabilitation activity (MoCHA): a mixed method study

    Get PDF
    Introduction To understand the variation in performance between community hospitals, our objectives are: to measure the relative performance (cost efficiency) of rehabilitation services in community hospitals; to identify the characteristics of community hospital rehabilitation that optimise performance; to investigate the current impact of community hospital in-patient rehabilitation for older people on secondary care and the potential impact if community hospital rehabilitation was optimised to best practice nationally; to examine the relationship between the configuration of intermediate care and secondary care bed use; and to develop toolkits for commissioners and community hospital providers to optimise performance. Methods and analysis Four linked studies will be performed. Study 1: Cost efficiency modelling will apply econometric techniques to datasets from the NHS Benchmarking Network surveys of community hospital and intermediate care. This will identify community hospitals’ performance and estimate the gap between high and low performers. Analyses will determine the potential impact if the performance of all community hospitals nationally was optimised to best performance, and examine the association between community hospital configuration and secondary care bed use. Study 2: A national community hospital survey gathering detailed cost data and efficiency variables will be performed. Study 3: In-depth case studies of three community hospitals, two high and one low performing, will be undertaken. Case studies will gather routine hospital and local health economy data. Ward culture will be surveyed. Content and delivery of treatment will be observed. Patients and staff will be interviewed. Study 4: Co-designed web-based quality improvement toolkits for commissioners and providers will be developed, including indicators of performance and the gap between local and best community hospitals performance. Ethics and dissemination Publications will be in peer reviewed journals, reports will be distributed through stakeholder organisations. Ethical approval was obtained from the Bradford Research Ethics committee (reference: 15/YH/0062)

    On the spherical-axial transition in supernova remnants

    Full text link
    A new law of motion for supernova remnant (SNR) which introduces the quantity of swept matter in the thin layer approximation is introduced. This new law of motion is tested on 10 years observations of SN1993J. The introduction of an exponential gradient in the surrounding medium allows to model an aspherical expansion. A weakly asymmetric SNR, SN1006, and a strongly asymmetric SNR, SN1987a, are modeled. In the case of SN1987a the three observed rings are simulated.Comment: 19 figures and 14 pages Accepted for publication in Astrophysics & Space Science in the year 201

    Breakup of 17^{17}F on 208^{208}Pb near the Coulomb barrier

    Full text link
    Angular distributions of oxygen produced in the breakup of 17^{17}F incident on a 208^{208}Pb target have been measured around the grazing angle at beam energies of 98 and 120 MeV. The data are dominated by the proton stripping mechanism and are well reproduced by dynamical calculations. The measured breakup cross section is approximately a factor of 3 less than that of fusion at 98 MeV. The influence of breakup on fusion is discussed.Comment: 7 pages, 8 figure

    Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares

    Full text link
    The extreme ultraviolet portion of the solar spectrum contains a wealth of diagnostic tools for probing the lower solar atmosphere in response to an injection of energy, particularly during the impulsive phase of solar flares. These include temperature and density sensitive line ratios, Doppler shifted emission lines and nonthermal broadening, abundance measurements, differential emission measure profiles, and continuum temperatures and energetics, among others. In this paper I shall review some of the advances made in recent years using these techniques, focusing primarily on studies that have utilized data from Hinode/EIS and SDO/EVE, while also providing some historical background and a summary of future spectroscopic instrumentation.Comment: 34 pages, 8 figures. Submitted to Solar Physics as part of the Topical Issue on Solar and Stellar Flare

    Measuring Black Hole Spin using X-ray Reflection Spectroscopy

    Full text link
    I review the current status of X-ray reflection (a.k.a. broad iron line) based black hole spin measurements. This is a powerful technique that allows us to measure robust black hole spins across the mass range, from the stellar-mass black holes in X-ray binaries to the supermassive black holes in active galactic nuclei. After describing the basic assumptions of this approach, I lay out the detailed methodology focusing on "best practices" that have been found necessary to obtain robust results. Reflecting my own biases, this review is slanted towards a discussion of supermassive black hole (SMBH) spin in active galactic nuclei (AGN). Pulling together all of the available XMM-Newton and Suzaku results from the literature that satisfy objective quality control criteria, it is clear that a large fraction of SMBHs are rapidly-spinning, although there are tentative hints of a more slowly spinning population at high (M>5*10^7Msun) and low (M<2*10^6Msun) mass. I also engage in a brief review of the spins of stellar-mass black holes in X-ray binaries. In general, reflection-based and continuum-fitting based spin measures are in agreement, although there remain two objects (GROJ1655-40 and 4U1543-475) for which that is not true. I end this review by discussing the exciting frontier of relativistic reverberation, particularly the discovery of broad iron line reverberation in XMM-Newton data for the Seyfert galaxies NGC4151, NGC7314 and MCG-5-23-16. As well as confirming the basic paradigm of relativistic disk reflection, this detection of reverberation demonstrates that future large-area X-ray observatories such as LOFT will make tremendous progress in studies of strong gravity using relativistic reverberation in AGN.Comment: 19 pages. To appear in proceedings of the ISSI-Bern workshop on "The Physics of Accretion onto Black Holes" (8-12 Oct 2012). Revised version adds a missing source to Table 1 and Fig.6 (IRAS13224-3809) and corrects the referencing of the discovery of soft lags in 1H0707-495 (which were in fact first reported in Fabian et al. 2009

    Automated Detection of EUV Polar Coronal Holes During Solar Cycle 23

    Get PDF
    A new method for automated detection of polar coronal holes is presented. This method, called perimeter tracing, uses a series of 171, 195, and 304 \AA\ full disk images from the Extreme ultraviolet Imaging Telescope (EIT) on SOHO over solar cycle 23 to measure the perimeter of polar coronal holes as they appear on the limbs. Perimeter tracing minimizes line-of-sight obscurations caused by the emitting plasma of the various wavelengths by taking measurements at the solar limb. Perimeter tracing also allows for the polar rotation period to emerge organically from the data as 33 days. We have called this the Harvey rotation rate and count Harvey rotations starting 4 January 1900. From the measured perimeter, we are then able to fit a curve to the data and derive an area within the line of best fit. We observe the area of the northern polar hole area in 1996, at the beginning of solar cycle 23, to be about 4.2% of the total solar surface area and about 3.6% in 2007. The area of the southern polar hole is observed to be about 4.0% in 1996 and about 3.4% in 2007. Thus, both the north and south polar hole areas are no more than 15% smaller now than they were at the beginning of cycle 23. This compares to the polar magnetic field measured to be about 40% less now than it was a cycle ago.Comment: 18 pagers, 7 figures, accepted to Solar Physic
    • 

    corecore