4,255 research outputs found

    Prediction for Irregular Ocean Wave and Floating Body Motion by Regularization: Part 1. Irregular Wave Prediction

    Get PDF
    Ocean waves can be explained in terms of many factors, including wave spectrum, which has the characteristics of wave height and periodicity, directional spreading function, which has a directional property, and random phase, which randomly represents a certain property. Under the assumption of a linear system, ocean waves show irregular behaviours, which can be observed in the forms of wave spectrum, directional spreading function, and complex phase calculations using the method of linear superposition. Ocean waves, which include a variety of periodic elements, exhibit direct proportionality between their period and propagation velocity. The purpose of this study was to understand the phase components of the period and to make exact calculations on the deterministic phase in order to make predictions on ocean waves. However, measurements of actual ocean waves exist only in the form of information on wave elevation, so we faced an inverse problem of having to analyse this information and calculate the deterministic phase. Regularization was used as part of the solution, and various methods were used to obtain stable values

    Prediction for Irregular Ocean Wave and Floating Body Motion by Regularization: Part 2. Motion Prediction

    Get PDF
    In the analysis of the motion of a floating body, the domains can broadly be divided into the frequency domain and the time domain. The essence of the frequency domain analysis lies in calculating the hydrodynamic coefficient from the equation of motion, which has six degrees of freedom, by applying several methods. In this research, Bureau Veritas’s “HydroStar” software was used, and the comparison and the verification were carried out by experiments. For the time domain analysis, we used an existing method proposed by Cummins and made motion predictions by using deterministic random phases calculated in the time domain calculations of the excitation force. Lastly, the potential of wave and motion predictions was verified through the data obtained from a motion analysis experiment using a tension leg platform in the context of irregular waves

    Classroom Readiness for Successful Inclusion: Teacher Factors and Preschool Children’s Experience with and Attitudes toward Peers with Disabilities

    Get PDF
    The current study examined (1) associations among teachers’ experiences regarding children with disabilities (i.e., education, specialized training, years of work experience), their attitudes toward disabilities, and their classroom practices in relation to inclusion and (2) associations among children’s attitudes toward peers with disabilities and child and teacher factors. Ninety-one 4- and 5-year-old children participated in an interview, and their teachers completed a survey. Teachers’ specialized training and bachelor’s degree in early childhood education (ECE) were positively associated with their inclusive practices in the classroom; teachers’ bachelor’s degree in ECE and experiences working with children with disabilities were positively associated with their attitudes toward disabilities and inclusion; and children’s perceived contact with people who have disabilities was positively associated their attitudes toward peers with disabilities. However, none of the teacher factors predicted children’s attitudes toward peers with disabilities. Early childhood teachers need more training opportunities to learn about disabilities to develop positive attitudes toward disabilities and inclusion. Providing frequent contact with people with disabilities may enhance children’s acceptance of peers with disabilities

    Wave Run-Up Phenomenon on Offshore Platforms: Part 1. Tension Leg Platform

    Get PDF
    This study reports on an extensive experimental campaign carried out to evaluate non-linear waves applied to offshore structures in extreme marine environments. An offshore tension leg platform (TLP) model was used to observe the waves around a fixed-type offshore structure. The wave amplitude measured in the experiments of this study was indicated as a wave run-up ratio. Both the first-order analysis and the analysis of the entire wave amplitude were described. The experimental results were compared with the calculations from a potential-based code in order to verify the effectiveness of the developed technology

    An Efficient Photoelectrochemical Hydrogen Evolution System using Silicon Nanomaterials with Ultra‐High Aspect Ratios

    Full text link
    We fabricated ultra‐high aspect ratio silicon nanomaterials, including a silicon nanomesh and silicon nanowire array, on a wafer scale for efficient photoelectrochemical hydrogen production. These silicon nanomaterials (feature size≈20 nm) possess a high aspect ratio to increase the optical absorptivity of the cells to approximately 95 % over a broad range of wavelengths. The silicon nanomesh and Si nanowire cells achieved high photocurrent values of 13 and 28 mA cm −2 , respectively, which are increased by 200 % and 570 % in comparison to their bulk counterparts. In addition, these scalable Si nanomaterials remained stable for up to 100 min of hydrogen evolution. Detailed studies on the doping and geometrical structures of the resulting hydrogen evolution cells suggest that both the n +  pp + doping and thickness of nanostructures are keys to the enhancement of the hydrogen evolution efficiency. The results obtained in this work show that these silicon nanomaterials can be used for high‐performance water‐splitting system applications. The straight doping: Wafer‐scale ultra‐high aspect ratio Si nanomesh/nanowires (feature size≈20 nm) were fabricated and utilized to produce an efficient photoelectrochemical hydrogen evolution system. The Si nanomesh cell yielded extreme optical absorptivity, high external quantum efficiency, and high photocurrent. Detailed studies suggest that both the n +  pp + doping and thickness of nanostructures are keys to the enhancement of the hydrogen evolution efficiency.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109595/1/ente_201402074_sm_miscellaneous_information.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/109595/2/889_ftp.pd

    PPIRank - an advanced method for ranking protein-protein interations in TAP/MS data

    Get PDF
    Background: Tandem affinity purification coupled with mass-spectrometry (TAP/MS) analysis is a popular method for the identification of novel endogenous protein-protein interactions (PPIs) in large-scale. Computational analysis of TAP/MS data is a critical step, particularly for high-throughput datasets, yet it remains challenging due to the noisy nature of TAP/MS data. Results: We investigated several major TAP/MS data analysis methods for identifying PPIs, and developed an advanced method, which incorporates an improved statistical method to filter out false positives from the negative controls. Our method is named PPIRank that stands for PPI ranking in TAP/MS data. We compared PPIRank with several other existing methods in analyzing two pathway-specific TAP/MS PPI datasets from Drosophila. Conclusion: Experimental results show that PPIRank is more capable than other approaches in terms of identifying known interactions collected in the BioGRID PPI database. Specifically, PPIRank is able to capture more true interactions and simultaneously less false positives in both Insulin and Hippo pathways of Drosophila Melanogaster
    • 

    corecore