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ABSTRACT 

 
In this study, condensation heat transfer experiments were conducted with oblong shell and plate heat exchanger 

(OSPHE) using R-410A. An experimental refrigerant loop has been established to measure the condensation heat 
transfer coefficient hr and frictional pressure drop ∆Pf of R-410A in a vertical OSPHE. Four vertical counter flow 
channels were formed in the OSPHE by five plates of geometry with a corrugated trapezoid shape of a chevron 
angle of 45 degree. OSPHE is different from the conventional plate heat exchanger. The plates that have an oblique 
pattern are elliptical in shape and stacked together in contrary arrangements, which are enclosed in a cylindrical 
shell. Although OSPHE is different from the conventional rectangular plate heat exchanger, the underlying flow 
channels through heat exchanger are the same as the conventional plate heat exchanger. The effects of the refrige-
rant mass flux, average heat flux, refrigerant saturation temperature and vapor quality of R-410A on the measured 
data were explored in detail. The results indicate that the condensation heat transfer coefficients and pressure drops 
increase with the vapor quality. A rise in the refrigerant mass flux causes an increase in the hr and ∆Pf. Also, a rise in 
the average heat flux causes an increase in the hr. But the effect of the average heat flux does not show significantly 
effect on the ∆Pf. Finally, at a higher saturation temperature the hr is found to be lower. On the other hand, the effect 
of the saturation temperature on the ∆Pf is small. Based on the present data, the empirical correlations are also provided 
for the measured heat transfer coefficients and pressure drops in terms of the Nusselt number and friction factor. 
 

1. INTRODUCTION 
 

Many air-conditioning and refrigeration systems have long used R-22 as the working fluid. Recently, because of 
the phase-out of CFCs and HCFCs outlined by the Montreal Protocol, R-22 will be phased out early this century. As 
a result, the search for a replacement for R-22 has been intensified in recent years. R-410A, a mixture of 50 wt% R-
32 and 50 wt% R-125 that exhibits azeotropic behavior has been considered one of the primary replacements for R-
22 in air-conditioning and refrigeration system applications. Moreover, in view of space saving and tightening 
energy-efficiency standards imposed by the federal government, the design of more compact heat exchangers is 
relatively important. Also, to meet the demand for saving energy and resources today, manufacturers are trying to 
enhance efficiency and reduce the size and weight of heat exchangers. Over the past decade, there has been 
tremendous advancement in the manufacturing technology of high efficiency heat exchangers. This has allowed the 
use of smaller and high performance heat exchangers. Consequently, the use of smaller and high performance heat 
exchanger will become popular in the design of HVAC heat exchangers. Normally, these heat exchangers are used 
in the two phase system for evaporation and condensation. In the design and analysis of the two phase system within 
this heat exchanger, it is necessary to understand the flow field and frictional characteristics of the two phase system. 
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When compared with the well-established shell and tube heat exchangers, the plate heat exchanger shows a lot of 
advantages like high NTU values, compactness, low cost, multi duties and reduced fouling etc. Plate heat exchangers 
have been widely used in food processing, chemical reaction processes, and other industrial applications for many 
years. Particularly, in the last 30 years plate heat exchangers have been introduced to the refrigeration and air 
conditioning systems as evaporators or condensers for their high efficiency and compactness. 

The Oblong Shell and Plate heat exchanger (OSPHE) is different from the conventional plate heat exchanger. The 
plates that have an oblique pattern are ellipse in shape, and stacked together in contrary arrangements, which are 
enclosed in a cylindrical shell. The operating temperature rises up to 350℃, and the pressure up to 10 MPa can be 
achieved. Although OSPHE is different from the conventional rectangular plate heat exchanger, the underlying flow 
channels through the exchanger are the same as the conventional plate heat exchanger. So OSPHE is being introduced 
to refrigeration and air conditioning systems as evaporators or condensers for their high efficiency and compactness. 
However, there are little data available for the design of OSPHE used as evaporators and condensers. 

In this study, the characteristics of the condensation heat transfer for R-410A flowing in the OSPHE were 
experimentally explored to set up data base for the design of the OSPHE. 
 

2. EXPERIMENTAL APPARATUS AND PROCEDURES 
 
2.1 Experimental apparatus 

The experimental system and heat transfer plate used to study the condensation of R-410A are schematically 
shown in Fig. 1 and 2, respectively. The experimental system consisted of with a test section, a refrigerant loop, a 
water loop and a data acquisition unit. R-410A is circulated in a refrigerant loop. In order to obtain different test 
conditions of R-410A including the vapor quality, saturation temperature (pressure) and imposed heat flux in the test, 
we needed to control the temperature and flow rate of the working fluid in the water loop. 

The Oblong Shell and Plate heat exchanger used in this study was formed by five commercialized SUS-304 plates. 
The plate surfaces were pressed to become grooved with a corrugated trapezoid shape and 45 deg of chevron angle. 
The corrugated grooves on the right and left outer plates have an oblique shape but those in the middle plate have a 
contrary oblique shape on both sides. Due to the contrary oblique shapes the flow streams near the plates cross each 
other in each channel. This cross flow creates a significant unsteady and random flow. In fact, the flow is highly 
turbulent even at low Reynolds number. 

The refrigerant loop contains a refrigerant pump, a pre-heater, a test section (OSPHE), a sub-cooler, a strainer, a 
refrigerant mass flow meter, a dryer/filter, and five sight glasses. The refrigerant pump is a magnetic pump 
(TUTHILL California) driven by a DC motor which is, in turn, controlled by a variable DC output motor controller. 
The variation of the liquid R-410A flow rate was controlled by the rotational speed of DC motor through the change 
of the DC current. The refrigerant flow rate was measured by a mass flow meter (Oval) installed between the pump 
and receiver with an accuracy of ± 0.2%. The pre-heater is used to evaporate the refrigerant to a specified vapor 
quality at the test section inlet by transferring heat to R-410A. The amount of heat transfer from the pre-heater to 
refrigerant is measured by a power meter (YOKOGAWA) connected to the pre-heater source. The dryer/filter 
intends to filter the solid particles possibly present in the loop. Meanwhile, a sub-cooler was used to condense the 
refrigerant vapor flowing out the test section by a cold water to avoid cavitations at the pump inlet. The pressure of 
the refrigerant loop can be controlled by varying the temperature and flow rate of cold water in the sub-cooler. After 
condensed, the sub-cooled liquid refrigerant flows back to the receiver. 

The water loop in the system, which is designed for circulating cold water through the test section, has a 200 liter 
constant temperature water bath equipped with a 5 kW heater and an air cooled refrigerant unit of 2 RT cooling 
capacity for accurate control of water temperature. The cold water is driven by a 0.37 kW water pump with an 
inverter to the OSPHE with a specified water flow rate. The accuracy of water flow rate measurement by the flow 
meter is ± 0.2%. 

The water loop for condensing R-410A vapor has a 200 liter constant temperature water bath equipped with a 5 
kW heater and an air cooled refrigeration unit of 3 RT cooling capacity for accurate control of water temperature. A 
0.37 kW water pump with an inverter is used to drive the cold water at a specified water flow rate to the sub-cooler. 

The data acquisition unit includes the 20 channels Fluke NetDAQ 2640A recorder combined with a personal 
computer. The recorder was used to record the temperature and voltage data. The NetDAQ 2640A recorder allows 
the measured data to transmit to personal computer and then to be analyzed by the computer immediately. 
 
2.2 Experimental procedures 
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Figure 1 : Schematic diagram of Oblong Shell and Plate heat exchanger 

 

0.
7

2.
8(

b)

3.5

9

9

?25

31
6

38
1

19
1

190                

Refrigerant

Refrigerant

Cold water

Flow
Director

Shell side

Plate side

Refrigerant
outlet

Refrigerant
inlet

Cold water

Cold water

Cold water  
Figure 2 : Schematic diagram of heat transfer plate               Figure 3 : Details of condensation flow direction 

 
In each test pressure of the refrigerant loop can be controlled by varying the temperature and flow rate of the 

water loop in the sub-cooler and current in the pre-heater. The vapor quality of R-410A at the test section inlet can 
be kept at the desired value by adjusting the voltage of the voltage transformer for the pre-heater. The heat transfer 
rate between the counter flow channels in the test section can be varied by changing the temperature and flow rate in 
the water loop for the test section. Any change of the system variables will lead to fluctuations in the temperature 
and pressure of the flow. It takes about 60-120 min to reach a statistically steady state at which variations of the 
time-average inlet and outlet temperatures are less than 0.1  and the variations of the pressure and heat flux are ℃
within 1% and 5%, respectively. Then the data acquisition unit is initiated to scan all the data channels for 30 times 
in 5 min. The mean values of the data for each channel are obtained to calculate the heat transfer coefficient. 

Before examining the condensation heat transfer characteristics, the preliminary experiments for single phase 
water convection in the plate and shell heat exchangers were performed. The modified Wilson's method (Farrell et 
al., 1991) was adopted to calculate the relation between single phase heat transfer coefficient and flow rate from 
these data. This single phase heat transfer coefficients can then be used to analyze the data acquired from the two-
phase heat transfer experiments. 
 

3. DATA REDUCTION 
 

From the definition of the hydraulic diameter, Shah and Wanniarachchi (1992) suggested to use two times of the 
channel spacing as the hydraulic diameter for plate heat exchangers when the channel width is much larger than the 
channel spacing. So we follow this suggestion. 

bdh 2≈                                                                                   (1) 
 
3.1 Two phase condensation heat transfer 

The total heat transfer rate between the counter flows in the test section is calculated from the cold water side as 
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)( ,,,,,, icwocwwpcww TTcmQ −=                                                                (2) 
Then, the refrigerant vapor quality entering the test section is evaluated from the energy balance for the pre-heater. 

The heat transfer to the refrigerant in the pre-heater is the sum of the sensible heat transfer (for the temperature rise 
of the refrigerant to the saturated value) and latent heat transfer (for the evaporation of the refrigerant). 

latsensp QQQ +=                                                                          (3) 

)( ,,,, iprsatrrprsens TTcmQ −=                                                                (4) 

opfgrlat ximQ ,=                                                                          (5) 
The above equations can be combined to evaluate the refrigerant quality at the exit of pre-heater that is considered 

to be the same as the vapor quality of refrigerant entering the test section. Specifically, 
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The change in the refrigerant vapor quality in the test section is then deduced from the heat transfer to the 
refrigerant in the test section, 

fgr

w

im
Q

x
⋅

=∆                                                                               (7) 

The average quality in the test section is given as 

2
xxxx imave

∆
−==                                                                         (8) 

The overall heat transfer coefficient U for the counter flow between the two channels can be expressed as 

LMTDA
QU w

⋅
=                                                                             (9) 

where LMTD is the logarithmic mean temperature difference between the two channels defined as 
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where 
icwosatr TTT ,,,,1 −=∆                                                                        (11) 

ocwisatr TTT ,,,,2 −=∆                                                                        (12) 
with Tr,sat,i and Tr,sat,o are the saturation temperatures of R-410A corresponding respectively to the inlet and outlet 
pressures in the P&SHE. Finally, the condensation heat transfer coefficient of R-410A is evaluated from 
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where the modified Wilson plot method was applied to calculate hw,c. 
 
3.2 Two phase condensation pressure drop 

To evaluate the frictional pressure drop associated with the R-410A condensation in the refrigerant channel, the 
frictional pressure drop ∆Pf was calculated by subtracting the pressure losses at the test section inlet and exit 
manifolds and ports (∆P)man, then adding the deceleration pressure rise during the R-410A condensation ∆Pde and 
the elevation pressure rise ∆Pele from the measured total pressure drop ∆Pexp for the refrigerant channel. Note that for 
the vertical downward refrigerant flow studied here the elevation pressure rise should be added in evaluating ∆Pf. 
Thus 

eledemanf PPPPP ∆+∆+∆−∆=∆ )(exp                                                      (14) 
The deceleration and elevation pressure rises were estimated by the homogeneous model for two phase gas-liquid 

flow. 
xGP fgde ∆=∆ υ2                                                                          (15) 

m
ele

gLP
υ

=∆                                                                                (16) 

where υm is the mean specific volume of the vapor-liquid mixture in the refrigerant channel when they are 
homogeneously mixed and is given as 
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)(])1([ fgmffmgmm xxx υυυυυ +=−+=                                                  (17) 
The pressure drop in the inlet and outlet manifolds and ports was empirically suggested by Shah and Focke (1988). 

It is approximately 1.5 times the head due to the flow expansion at the channel inlet 

im

m
man

u
P ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∆

υ2
5.1)(

2
                                                                   (18) 

where um is the mean flow velocity. With the homogeneous model the mean velocity is 
mm Gu υ=                                                                              (19) 

Based on the above estimation the deceleration pressure rise, the pressure losses at the test section inlet and exit 
manifolds and ports, and the elevation pressure rise were found to be rather small. The frictional pressure drop 
ranges from 95% to 99% of the total pressure drop measured. According to the definition 

im
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υ22
                                                                         (20) 

 
4. RESULTS AND DISCUSSION 

 
4.1 Single phase heat transfer 

From the initial single phase water to water heat transfer test for the OSPHE, the convection heat transfer 
coefficient in the shell side was correlated as 

3/195.0 PrRe05.0=sNu                                                                     (21) 
 
The energy balance between the hot and cold side of water was within 3% for all runs. 

 
4.2 Two phase heat transfer 

In the present investigation of the R-410A condensation in the P&SHE, the R-410A mass flux G was varied from 
40 to 80 kg/m2s, the average heat flux qw” from 4.0 to 8.0 kW/m2 and the saturation temperature Tr,sat from 30 to 
40 . The measured heat transfer coefficients are to be presented in terms of their variations with the average vapor ℃
quality in the test section. 

Figure 4 shows the effect of the refrigerant mass flux on the measured condensation heat transfer coefficients, 
where the measured data for G = 40, 60 and 80 kg/m2s at Tr,sat = 30  and ℃ qw” = 6.0 kW/m2  is plotted as a function 
of xm. The results show that the condensation heat transfer coefficient rises linearly with the mass flux in the total 
vapor quality region. This obviously results from the simple fact that at a higher xm the liquid film on the surface is 
thinner and the condensation rate is thus higher. 

The effects of average heat flux on the condensation heat transfer are shown Fig. 5 by plotting the measured data 
for qw" = 4, 6 and 8 kW/m2 at G = 60 kg/m2s and Tr,sat = 30 °C as a function of xm. It is well known that the 
condensation rate is almost proportional to the heat flux. The results indicate that at a given vapor quality the heat 
transfer coefficient is higher for a higher heat flux. However, compared with the mass flux effects shown in Fig. 4, 
the heat flux has a small effect on the condensation heat transfer coefficient in the whole vapor quality region. 

The effect of the refrigerant saturation temperature on the condensation heat transfer coefficient is illustrated in 
Fig. 6 by plotting the data for Tr,sat = 30, 35 and 40°C at G = 60 kg/m2s and qw" = 6 kW/m2 as a function of xm. The 
results suggest that at a given saturation temperature the condensation heat transfer coefficient increases with the 
mean vapor quality. At a fixed xm, the condensation heat transfer coefficient is lower for a higher Tr,sat in the whole 
quality region. Specifically, the mean heat transfer coefficient at 30℃ is about 15% bigger than that at 40℃. This is 
conjectured to be mainly resulting from reduction in the conductivity of liquid film for the R-410A saturation 
temperature raised from 30 to 40℃. The associated thermal resistance of the liquid film is larger, causing a poorer 
heat transfer rate. 

It is necessary to compare the present data for the R-410A condensation heat transfer coefficient in the OSPHE to 
those in plate heat exchanger reported in the literature. Due to the limited availability of the data for plate heat 
exchangers with the same range of the parameters covered in the present study, the comparison is only possible for a 
few cases. This is illustrated in Fig. 7, in which our data are compared with correlation of Yan et al. (1999) and our 
R-134a data in the same test section. Note that the data from Yan et al. are R-134a condensation heat transfer 
coefficient measured in a plate heat exchanger with the vapor quality from 0.08 to 0.86. Yan et al. proposed 
condensation heat transfer correlation equation such as 
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Figure 4 : Variations of condensation heat transfer Figure 5 : Variations of condensation heat transfer 
coefficient with mean vapor quality for various mass coefficient with mean vapor quality for various heat 
fluxes at qw" = 6.0 kW/m2 and Tr,sat = 30℃ fluxes at G = 60 kg/m2s and Tr,sat = 30℃ 
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Figure 6 : Variations of condensation heat transfer Figure 7 : Comparison of the present heat transfer data 
coefficient with mean vapor quality for various saturation with those for plate heat exchanger from Yan et al. 
temperatures at G = 60 kg/m2s and qw" = 6.0 kW/m2 and our R-134A data 
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where Reeq is the equivalent Reynolds number. Reeq is defined as 
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and Geq is the equivalent mass flux first proposed by Akers et al. (1958) defined as 
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The comparison shows that the R-410A condensation heat transfer coefficient for OSPHE is about 23% higher in 
average than that for our R-134A experiment. Also, the comparison indicates that our R-134A condensation heat 
transfer coefficient for OSPHE is about 26% higher than that for the plate heat exchanger. 
 
4.3 Two phase pressure drop 

Figure 8 shows the effect of the refrigerant mass flux on R-410A frictional pressure drop. The results indicate that 
at a given mass flux the pressure drop is larger for a higher vapor quality. In addition, the pressure drop with the 
vapor quality is more pronounced for a higher mass flux. This obviously results from the simple fact that at a higher 
xm the velocity of vapor was larger and the pressure drop was thus higher. 
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Figure 8 : Frictional pressure drop variation with Figure 9 : Frictional pressure drop variation with 
the mean vapor quality for various mass fluxes the mean vapor quality for various heat fluxes 
at qw" = 6.0 kW/m2 and Tr,sat = 30℃ at G = 60 kg/m2s and Tr,sat = 30℃ 

xm

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr
es

su
re

 D
ro

p 
pe

r u
ni

t l
en

gt
h 

[k
Pa

/m
]

4

6

8

10

12

14

16

Tr,sat = 30℃
Tr,sat = 35℃
Tr,sat = 40℃

R-410A
G = 60 kg/m2s, q"w = 6 kW/m2

 ftp Re0.4 Bo-0.5(pm / pc)
-0.8

  exp

0 50 100 150 200

f tp
 R

e0.
4 
B

o-0
.5
( p

m
 / 

p c)-0
.8

  Y
an

0

50

100

150

200

Our R-410A data
Our R-134A data

 
Figure 10 : Frictional pressure drop variations with Figure 11 : Comparison of the present pressure drop data 
the mean vapor quality for various saturation with those for plate heat exchanger from Yan et al. 
temperatures at G = 60 kg/m2s and qw" = 6.0 kW/m2 
 

Figure 9 shows the effects of the heat flux on the frictional pressure drop. The data indicate that at a given heat 
flux the frictional pressure drop increases linearly with the mean vapor quality of the refrigerant in the P&SHE. But 
an increase in the heat flux dose not show significantly effect on the frictional pressure drop in the OSPHE. 

The results in Fig. 10 for different saturation temperatures of R-410A indicated that at a given Tr,sat the pressure 
drop is larger for a higher vapor quality. Note that in the total vapor quality range the pressure drop is smaller at a 
higher Tr,sat. This is conjectured to be mainly resulting from a reduction in the velocity of vapor for the R-410A 
saturation temperature raised from 30 to 40℃. 

Figure 11 compares the condensation pressure drop for both the OSPHE and plate heat exchanger from Yan et al. 
(1999). 
 
4.4 Correlation equations 

To facilitate the use of the Oblong Shell and Plate heat exchanger as condensers, correlating equations for the 
dimensionless condensation heat transfer coefficient and friction factor based on the present data are provided. This 
is the modified Yan et al's correlation. 
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Figure 12 : Comparison of the proposed correlation for Figure 13 : Comparison of the proposed correlation for 
Nusselt number with the present data friction factor with the present data 
 
where Pc is the critical pressure of R-410A. 

Figure 12 shows the comparison of the proposed condensation heat transfer correlation to the present data, 
indicating that most of the experimental values are within ±7%. Figure 13 shows the comparison of the proposed 
correlation for the friction factor to the present data. It is found that the average deviation is about ±20% between ftp 
correlation and the data. 
 

5. CONCLUSIONS 
 

An experiment has been carried out in the present study to measure the heat transfer coefficient and pressure drop 
for the condensation of R-410A flowing in the Oblong Shell and Plate heat exchanger. The effects of the mass flux 
of R-410A, average imposed heat flux, saturated temperature and vapor quality of R-410A on the measured data 
were experimentally examined in detail. 

The present results for the OSPHE show that the condensation heat transfer coefficient and pressure drop 
normally increase with the refrigerant mass flux. A rise of heat flux dose not show significant effect on the 
condensation heat transfer coefficient and the frictional pressure drop at the whole vapor quality in the P&SHE. It 
was noted that at a higher saturation temperature of the refrigerant condensation heat transfer coefficient and 
pressure drop are lower. The empirical correlations are also provided for the measured heat transfer coefficients and 
pressure drop in terms of the Nusselt number and friction factor. 
 

NOMENCLATURE 
 
A : heat transfer area of the plate (m2) Bo : Boiling number  Subscripts 
G : mass flux (kg/m2s) ifg : enthalpy of vaporization (J/kg) p : pre-heater 
L : length from center of inlet port to m : mass flow rate (kg/s) r : refrigerant 
 center of exit port  (m) Q : heat transfer rate (W) w : water 
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