1,524 research outputs found

    Quench characteristics of a stabilizer-free 2G HTS conductor

    No full text
    The prospect of medium/high field superconducting magnets using second generation (2G) HTS tapes is approaching reality with continued enhancement in the performance of these conductors. While the cryogenic stability and quench propagation are fundamental issues for the design and safe operation of superconducting magnets, there is insufficient understanding and experimental data for 2G HTS conductors, in particular for the high field scenario at low temperature (<77 K) where the current sharing regime is much larger than in low temperature superconductors. The present work includes a systematic characterization of the relevant thermal-electrical properties used for both qualitative discussion and numerical analysis. Direct measurements of one dimensional adiabatic quench initiation and propagation of a stabilizer-free 2G conductor have been carried out with spatial-temporal recording of temperature and voltage following the deposition of varying local heat pulses to the conductor at different temperatures between 30 K and 77 K carrying different transport currents. The minimum quench energy, and the heat generation in the minimum propagation zone (MPZ) have been obtained as a function of temperature and transport current. The results show quench features unique to HTS such as an increasing MPZ with transport current and higher quench energies at lower temperatures. The experimental results are discussed in the context of current sharing over a large temperature range

    E-J Characteristic of 2G YBCO Coated Conductor Tapes at Different Temperatures

    Get PDF
    AbstractThe E-J characteristics of High temperature superconducting (HTS) composite are not only fundamental to the understanding of flux dynamics and flux pinning but also the quench behaviour of HTS at an extended temperature range. The present work present the E-J characteristics of state-of-the-art 2G YBCO Tapes of SuperPowerTM measured at different temperatures between 40K and 80K. The results revealed a appreciable deviation from the power-law E-J characteristics, an established framework for 1G 2223 conductors. In contrast, the equivalent power exponent n was found to decrease with increasing current, resulting in a reduced rate for the non-linear increase of voltage at higher current. The softening of E-J characteristic remain unchanged as the temperature is lowered. Furthermore the power exponent n at the critical current appears to be constant increasing at lower temperatures. Analysis presented in the work shows that the collective pinning of vortex glass gives a satisfactory quantitative description of the E-J characteristics of 2G YBCO tapes. A constant collective pinning potential U/kBT ∼ 15 and vortex glass exponent μ ∼ 2 were found for temperatures between 45K and 80K

    Reactive Oxygen Species-Mediated Neurodegeneration is Independent of the Ryanodine Receptor in Caenorhabditis elegans

    Get PDF
    Despite the significant impacts on human health caused by neurodegeneration, our understanding of the degeneration process is incomplete. The nematode Caenorhabditis elegans is emerging as a genetic model organism well suited for identification of conserved cellular mechanisms and molecular pathways of neurodegeneration. Studies in the worm have identified factors that contribute to neurodegeneration, including excitotoxicity and stress due to reactive oxygen species (ROS). Disruption of the gene unc-68, which encodes the ryanodine receptor, abolishes excitotoxic cell death, indicating a role for calcium (Ca2+) signaling in neurodegeneration. We tested the requirement for unc-68 in ROS-mediated neurodegeneration using the genetically encoded photosensitizer KillerRed. Upon illumination of KillerRed expressing animals to produce ROS, we observed similar levels of degeneration in wild-type and unc-68 mutant strains. Our results indicate that ROS-mediated cell death is independent of unc-68 and suggest multiple molecular pathways of neurodegeneration

    The accuracy of diagnostic ultrasound imaging for musculoskeletal soft tissue pathology of the extremities: A comprehensive review of the literature

    Get PDF
    Musculoskeletal diagnostic ultrasound imaging (MSK-DUSI) has been growing outside the traditional radiology speciality. Increased use of this technology has been reported in several healthcare settings, however an apparent gap in the knowledge of the accuracy of this diagnostic technology indicated a review was warranted. We undertook a structured review of the literature to assess the accuracy of MSK-DUSI for the diagnosis of musculoskeletal soft tissue pathology of the extremities. An electronic search of the National Library of Medicine’s PubMed database (1972 to mid-2014) was conducted. All relevant systematic reviews of diagnostic studies, all diagnostic studies published after the date of the latest systematic reviews and relevant diagnostic studies outside the scope the systematic reviews that directly compared the accuracy of MSK-DUSI (the index test) to an appropriate reference standard for the target condition were included. A fundamental appraisal of the methodological quality of studies was completed. The individual sensitivity, specificity and likelihood ratio data were extracted and entered into diagnostic accuracy tables. A total of 207 individual studies were included. The results show that MSK-DUSI has acceptable diagnostic accuracy for a wide spectrum of musculoskeletal conditions of the extremities. However, there is a lack of high quality prospective experimental studies in this area and as such clinicians should interpret the results with some caution due to the potential for overestimation of diagnostic accuracy

    Towards 5D Grand Unification without SUSY Flavor Problem

    Full text link
    We consider the renormalization group approach to the SUSY flavor problem in the supersymmetric SU(5) model with one extra dimension. In higher dimensional SUSY gauge theories, it has been recently shown that power corrections due to the Kaluza-Klein states of gauge fields run the soft masses generated at the orbifold fixed point to flavor conserving values in the infra-red limit. In models with GUT breaking at the brane where the GUT scale can be larger than the compactification scale, we show that the addition of a bulk Higgs multiplet, which is necessary for the successful unification, is compatible with the flavor universality achieved at the compactification scale.Comment: JHEP style file of 35 pages with 3 figures, Version to appear in JHE

    Magnetic field diagnostics and spatio-temporal variability of the solar transition region

    Full text link
    Magnetic field diagnostics of the transition region from the chromosphere to the corona faces us with the problem that one has to apply extreme UV spectro-polarimetry. While for coronal diagnostic techniques already exist through infrared coronagraphy above the limb and radio observations on the disk, for the transition region one has to investigate extreme UV observations. However, so far the success of such observations has been limited, but there are various projects to get spectro-polarimetric data in the extreme UV in the near future. Therefore it is timely to study the polarimetric signals we can expect for such observations through realistic forward modeling. We employ a 3D MHD forward model of the solar corona and synthesize the Stokes I and Stokes V profiles of C IV 1548 A. A signal well above 0.001 in Stokes V can be expected, even when integrating for several minutes in order to reach the required signal-to-noise ratio, despite the fact that the intensity in the model is rapidly changing (just as in observations). Often this variability of the intensity is used as an argument against transition region magnetic diagnostics which requires exposure times of minutes. However, the magnetic field is evolving much slower than the intensity, and thus when integrating in time the degree of (circular) polarization remains rather constant. Our study shows the feasibility to measure the transition region magnetic field, if a polarimetric accuracy on the order of 0.001 can be reached, which we can expect from planned instrumentation.Comment: Accepted for publication in Solar Physics (4.Mar.2013), 19 pages, 9 figure

    Dilaton gravity approach to three dimensional Lifshitz black hole

    Full text link
    The z=3 Lifshitz black hole is an exact black hole solution to the new massive gravity in three dimensions. In order to understand this black hole clearly, we perform a dimensional reduction to two dimensional dilaton gravity by utilizing the circular symmetry. Considering the linear dilaton, we find the same Lifshitz black hole in two dimensions. This implies that all thermodynamic quantities of the z=3 Lifshitz black hole could be obtained from its corresponding black hole in two dimensions. As a result, we derive the temperature, mass, heat capacity, Bekesnstein-Hawking entropy, and free energy.Comment: 13 pages, 1 figure, version to appear in EPJ

    Star and Planet Formation with ALMA: an Overview

    Full text link
    Submillimeter observations with ALMA will be the essential next step in our understanding of how stars and planets form. Key projects range from detailed imaging of the collapse of pre-stellar cores and measuring the accretion rate of matter onto deeply embedded protostars, to unravelling the chemistry and dynamics of high-mass star-forming clusters and high-spatial resolution studies of protoplanetary disks down to the 1 AU scale.Comment: Invited review, 8 pages, 5 figures; to appear in the proceedings of "Science with ALMA: a New Era for Astrophysics". Astrophysics & Space Science, in pres

    Gamma rays from dark matter annihilation in the Draco and observability at ARGO

    Full text link
    The CACTUS experiment recently observed a gamma ray excess above 50 GeV from the direction of the Draco dwarf spheroidal galaxy. Considering that Draco is dark matter dominated the gamma rays may be generated through dark matter annihilation in the Draco halo. In the framework of the minimal supersymmetric extension of the standard model we explore the parameter space to account for the gamma ray signals at CACTUS. We find that the neutralino mass is constrained to be approximately in the range between 100 GeV ~ 400 GeV and a sharp central cuspy of the dark halo profile in Draco is necessary to explain the CACTUS results. We then discuss further constraints on the supersymmetric parameter space by observations at the ground based ARGO detector. It is found that the parameter space can be strongly constrained by ARGO if no excess from Draco is observed above 100 GeV.Comment: 15 pages, 4 figure
    corecore