70,827 research outputs found

    New EUV Fe IX emission line identifications from Hinode/EIS

    Full text link
    Four Fe IX transitions in the wavelength range 188--198 A are identified for the first time in spectra from the EUV Imaging Spectrometer on board the Hinode satellite. In particular the emission line at 197.86 A is unblended and close to the peak of the EIS sensitivity curve, making it a valuable diagnostic of plasma at around 800,000 K - a critical temperature for studying the interface between the corona and transition region. Theoretical ratios amongst the four lines predicted from the CHIANTI database reveal weak sensitivity to density and temperature with observed values consistent with theory. The ratio of 197.86 relative to the 171.07 resonance line of Fe IX is found to be an excellent temperature diagnostic, independent of density, and the derived temperature in the analysed data set is log T=5.95, close to the predicted temperature of maximum ionization of Fe IX.Comment: 10 pages, 3 figures, 2 tables, submitted to ApJ Letter

    Exact solution of lossy asymmetrical coupled dielectric slab waveguides

    Get PDF
    This paper gives an exact characteristic equation for asymmetrical coupled dielectric slab waveguides with losses in both the guiding and surrounding regions. For the lossless case the solution of a single transcendental equation is all that is required for the evaluation of the propagation constant

    The Solar Argon Abundance

    Full text link
    The solar argon abundance cannot be directly derived by spectroscopic observations of the solar photosphere. The solar Ar abundance is evaluated from solar wind measurements, nucleosynthetic arguments, observations of B stars, HII regions, planetary nebulae, and noble gas abundances measured in Jupiter's atmosphere. These data lead to a recommended argon abundance of N(Ar) = 91,200(+/-)23,700 (on a scale where Si = 10^6 atoms). The recommended abundance for the solar photosphere (on a scale where log N(H) = 12) is A(Ar)photo = 6.50(+/-)0.10, and taking element settling into account, the solar system (protosolar) abundance is A(Ar)solsys = 6.57(+/-)0.10.Comment: 14 pages, 1 figure, 1 table; submitted to Astrophysical Journa

    A closer look at a coronal loop rooted in a sunspot umbra

    Full text link
    Extreme UV (EUV) and X-ray loops in the solar corona connect regions of enhanced magnetic activity, but they are not usually rooted in the dark umbrae of sunspots because the strong magnetic field found there suppresses convection. This means that the Poynting flux of magnetic energy into the upper atmosphere is not significant within the umbra as long as there are no light bridges or umbral dots. Here we report a rare observation of a coronal loop rooted in the dark umbra of a sunspot without any traces of light bridges or umbral dots. We used the slit-jaw images and spectroscopic data from IRIS and concentrate on the line profiles of O IV and Si IV that show persistent strong redshifted components in the loop rooted in the umbra. Using the ratios of O IV, we can estimate the density and thus investigate the mass flux. The coronal context and temperature diagnostics of these observations is provided through the EUV channels of AIA. The coronal loop, embedded within cooler downflows, hosts supersonic downflows. The speed of more than 100 km s−1^{-1} is on the same order of magnitude in the transition region lines of O IV and Si IV, and is even seen at comparable speed in the chromospheric Mg II lines. At a projected distance of within 1"1" of the footpoint, we see a shock transition to smaller downflow speeds of about 15 km s−1^{-1} being consistent with mass conservation across a stationary isothermal shock. We see no direct evidence for energy input into the loop because the loop is rooted in the dark uniform part of the umbra with no light bridges or umbral dots near by. Thus one might conclude that we are seeing a siphon flow driven from the footpoint at the other end of the loop. However, for a final result data of similar quality at the other footpoint are needed, but this is too far away to be covered by the IRIS field of view.Comment: Accepted for publication in Astronomy and Astrophysics (abridged abstract

    Network-Configurations of Dynamic Friction Patterns

    Full text link
    The complex configurations of dynamic friction patterns-regarding real time contact areas- are transformed into appropriate networks. With this transformation of a system to network space, many properties can be inferred about the structure and dynamics of the system. Here, we analyze the dynamics of static friction, i.e. nucleation processes, with respect to "friction networks". We show that networks can successfully capture the crack-like shear ruptures and possible corresponding acoustic features. We found that the fraction of triangles remarkably scales with the detachment fronts. There is a universal power law between nodes' degree and motifs frequency (for triangles, it reads T(k)\proptok{\beta} ({\beta} \approx2\pm0.4)). We confirmed the obtained universality in aperture-based friction networks. Based on the achieved results, we extracted a possible friction law in terms of network parameters and compared it with the rate and state friction laws. In particular, the evolutions of loops are scaled with power law, indicating the aggregation of cycles around hub nodes. Also, the transition to slow rupture is scaled with the fast variation of local heterogeneity. Furthermore, the motif distributions and modularity space of networks -in terms of withinmodule degree and participation coefficient-show non-uniform general trends, indicating a universal aspect of energy flow in shear ruptures

    Topological Complexity of Frictional Interfaces: Friction Networks

    Get PDF
    Through research conducted in this study, a network approach to the correlation patterns of void spaces in rough fractures (crack type II) was developed. We characterized friction networks with several networks characteristics. The correlation among network properties with the fracture permeability is the result of friction networks. The revealed hubs in the complex aperture networks confirmed the importance of highly correlated groups to conduct the highlighted features of the dynamical aperture field. We found that there is a universal power law between the nodes' degree and motifs frequency (for triangles it reads T(k)\proptok{\beta} ({\beta} \approx2\pm0.3)). The investigation of localization effects on eigenvectors shows a remarkable difference in parallel and perpendicular aperture patches. Furthermore, we estimate the rate of stored energy in asperities so that we found that the rate of radiated energy is higher in parallel friction networks than it is in transverse directions. The final part of our research highlights 4 point sub-graph distribution and its correlation with fluid flow. For shear rupture, we observed a similar trend in sub-graph distribution, resulting from parallel and transversal aperture profiles (a superfamily phenomenon)
    • …
    corecore