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Abstract. Through research conducted in this study, a net-
work approach to the correlation patterns of void spaces in
rough fractures (crack type II) was developed. We char-
acterized friction networks with several networks charac-
teristics. The correlation among network properties with
the fracture permeability is the result of friction networks.
The revealed hubs in the complex aperture networks con-
firmed the importance of highly correlated groups to con-
duct the highlighted features of the dynamical aperture field.
We found that there is a universal power law between the
nodes’ degree and motifs frequency (for triangles it reads
T (k) ∝ kβ(β ≈ 2± 0.3)). The investigation of localization
effects on eigenvectors shows a remarkable difference in par-
allel and perpendicular aperture patches. Furthermore, we
estimate the rate of stored energy in asperities so that we
found that the rate of radiated energy is higher in parallel
friction networks than it is in transverse directions. The fi-
nal part of our research highlights 4 point sub-graph distribu-
tion and its correlation with fluid flow. For shear rupture, we
observed a similar trend in sub-graph distribution, resulting
from parallel and transversal aperture profiles (a superfamily
phenomenon).

1 Introduction

Cracks, fractures, joints and – on a global scale – faults
are the main elements of fluid flow and induced disorder
in rock masses. The evolution of such frictional interfaces
and the onset of slip are integrated with the developments
of the contact areas (Dieterich and Kilgore, 1994; Rubin-
stein et al., 2004, 2009; Thompson et al., 2009). The crack-
like behaviour of rupture in frictional interfaces also sup-
ports the role of relative contact areas and apertures (Ru-
binstein et al., 2004, 2009; Ben-David and Fineberg, 2010).
Also, the variations of fluid flow features (such as perme-
ability and tortuosity) are controlled directly with aperture

spaces (Auradou et al., 2005; Sharifzadeh, 2005; Ghaffari
et al., 2011b). Characterization of contact patterns and pos-
sible correlation among elements of the sheared system are
the key elements in the analysis of sheared systems as well
as frictional interfaces. Such characterization has been real-
ized by using several techniques such as employing statistical
methods that include root-mean square (RMS), RMS of first
derivative (Z2), RMS of second derivative (Z3), and structure
function (SF) (Fardin et al., 2001; Lanaro and Stephansson,
2003; Sharifzadeh, 2005); geo-statistical methods to study
spatial variation of asperity heights as well as spatial corre-
lation (semi-variograms) and correlation length which gives
an idea of the aperture changes over the frictional surface;
the fractal models mainly used for scale effect analysis (La-
naro and Stephansson, 2003). We notice nonlinear and col-
lective behaviours of contact areas in frictional interfaces in-
dicate a complex system with intricate response to environ-
ment stimuli.

One of the recent theories to analysis of complex sys-
tems is network theory. Network theory is a fundamen-
tal tool for the modern understanding of complex systems
in which, by a simple graph representation, the elementary
units of a system become nodes, and their mutual interac-
tions become links. With this transformation of a system to
a network space, many properties about the structure and dy-
namics of the system itself can be inferred. Recently, direct
network approaches (from mechanical point of view) have
been used to study the behaviour of crumpled papers, shells
(Aharoni and Sharon, 2010; Andresen et al., 2007) and force
chains in granular materials (Tordesillas et al., 2010) .The
indirect approaches mostly transfer the information in time
series (recurrent events) into graphs, and analysis obtained
graphs with networks attributes (for example see: Donges
et al., 2009; Gao et al., 2010). Earthquake networks result-
ing from faults activities, which are another form of indirect
networks, have also been addressed (Abe and Suzuki, 2006;
Baiesi and Paczuski, 2004). We notice earthquake are the
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Figure 1. a) Shear strength for different cases (SD=Shear Displacement in mm; normal 

stresses for case1:1Mpa, case3: 3 MPa, case5: 5 MPa and case6: 3 MPa (without 

control of upper shear box-Data set courtesy of M.Sharifzadeh); b) Contact zones 

(black) and non-contact areas during the evolution of a frictional interface (case 3) ;(c) 

density of edges versus threshold level and d) natural logarithmic variation of mean 

Fig. 1. (a) Shear strength for different cases (SD = Shear Displacement in mm; normal stresses for case 1: 1 Mpa, case 3: 3 MPa, case 5:
5 MPa and case 6: 3 MPa (without control of upper shear box-Data set courtesy of M. Sharifzadeh);(b) Contact zones (black) and non-
contact areas during the evolution of a frictional interface (case 3);(c) density of edges versus threshold level and(d) natural logarithmic
variation of mean betweennness centrality (B.C) with truncation value. The indicated interval with arrows shows the best possible threshold
level where the minimum variation of log<B.C>occurs (the most stable-dominant structures).<. . .> indicates average over all nodes (i.e.
aperture patches).

direct results of evolution of frictional interfaces and then
analysis emerged patterns of earthquakes give insight into
the fault mechanism. In this approach, the events are con-
nected to each other based on a novel metric that includes
Euclidean distance of events and the spatial heterogeneity.
Analysis of earthquake networks showed that networks could

be useful in detecting symptoms and signatures that typically
precede events. Evolution of earthquake network parame-
ters also gives rise to a close-up point of view to underly-
ing earthquake dynamics, i.e. characterizing complex phe-
nomena such as earthquakes. With respect to single fracture
behaviour, the opening spaces (i.e. aperture patches) were
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mapped onto networks based on a Euclidean metric (Ghaf-
fari et al., 2009, 2010). The results showed the clustering
coefficient of obtained networks roughly to scale with the
mechanical or hydraulic properties of the shear fracture.

In the present study, we mapped the measured patterns
of aperture patches onto the network, using an indirect net-
work approach. With this transformation of aperture patches
in networks, we introduced friction networks. The complex
contact area patterns result from the careful measurement of
the rough fracture surfaces with a scanner laser over different
cases of normal loads. Our focus was on the possible cor-
relation among networks’ characteristics and the mechanical
and hydro-mechanical features (i.e. permeability) of the frac-
ture. Remarkably, we found a universal power law among
the nodes’ degree and the frequency of loops. Based on this
finding, we extended the classical rate and state friction law
in terms of network evolution. Next, we investigated rate
of energy storage in friction networks. To do this, we dis-
tinguished the synchronization of energy flux through the
obtained networks, noting its relation to the characteristic
length of networks as well as to the localization of Lapla-
cian matrix eigenvectors. This transformation of correlation
patterns to network spaces can be interpreted as a way to take
into account the long-range interactions of profiles, as well as
the force chains in granular materials. A further part of our
research was the motif analysis of the constructed networks.
In our study, analysis of 4-node sub-graphs revealed a super-
family phenomenon in sheared interfaces. In other words, a
similar trend in sub-graphs distribution resulted from parallel
and transversal aperture profiles.

2 Materials and methods

Our laboratory test procedure involved preparing a rough
fracture, measuring the morphology of halves by a scanner
laser, and measuring permeability. The rock used was gran-
ite with a unit weight of 25.9 kN m−3 and a uniaxial com-
pressive strength of 172 MPa. An artificial rock joint was
created by splitting the specimen mid-height with a special
joint-creating apparatus, which has two horizontal jacks and
a vertical jack [18–19]. The sides of the joint were cut down
after it was created. The final size of the sample was 180 mm
in length, 100 mm in width, and 80 mm in height. A virtual
mesh with a square element size of 0.2 mm was spread on
each surface, and the height at each position was measured
with a laser scanner. The procedural details of reconstruct-
ing the aperture fields can be found in Sharifzadeh (2005;
Sharfizadeh et al., 2008) While recording the variation of
surfaces, different cases of normal stresses (1, 3, and 5 MPa)
were used (Fig. 1). Next, the non-contact areas were mapped
onto a network. To set up a network, we considered each
aperture profile as a node. Each profile hasN pixels, with
each pixel showing the void size of that cell. Depending on
the direction of each profile, its length can be observed to

change. In our study, the maximum number of profiles were
observed in the direction perpendicular to the shear, while
the minimum number was found in the parallel direction. To
make an edge between two nodes, a correlation measurement
over the aperture profiles was used. For each pair of profiles
Vi andVj , containingN elements (pixels), the correlation
coefficient can be written as:

Cij =

N∑
k=1

[Vi(k)− ≺Vi �] .
[
Vj (k)− ≺Vj �

]
√

N∑
k=1

[Vi(k)− ≺Vi �]2.

√
N∑

k=1

[
Vj (k)− ≺Vj �

]2

(1)

where≺ Vi �=

N∑
k=1

Vi (k)

N
. We constructed networks from the

measured apertures following two directions: parallel and
perpendicular to the shear direction. To make an edge be-
tween two nodes, a correlation measurement (Cij ) over the
aperture profiles was used. We assumed that ifCij ≥ rc, then
a link between two nodes was attached. To choose the op-
timum valuerc (or a range of that), we note that the aim is
to reach or keep the most stable structures in the total topol-
ogy of the constructed networks. Different approaches have
been used to this effect, focusing on the density of links, the
dominant correlation among nodes, and distribution of edges
or clusters. To chooserc, we used a nearly stable region in
the betweenness centrality (B.C) –rc space (Fig. 1d), which
is in analogy with the minimum value in the rate of edge
density (Fig. 1c) (Gao and Jin, 2009). Betweenness central-
ity is a measure of how many shortest paths cross through a
node. This method has been used successfully in analysis of
time-series patterns in network spaces. This interval is nearly
equal to a choice ofrc to be about 10–20 % of the maximum
correlation value. The mentioned aperture patches may be
observed in a manifold space. By combining several patches
(profiles) – from several lines/observers like 499 for paral-
lel and 890 for perpendicular – we can reach a reconstructed
“phase space” for a certain time step. In other words, we can
interpret the overall observations in terms of time-delay coor-
dinates. Following this, we can relate the aperture space anal-
ysis to a time series analysis with complex networks. The
latter interpretation of the profiles (either aperture or rough-
ness profiles) can be considered a novel way in the analysis
and interpretation of fracture surface topography and friction
patterns analysis.

To proceed, we used several characteristics of networks.
Each node is characterized by its degreeki and the cluster-
ing coefficient. The clustering coefficient as a fraction of
triangles (3 point loops/cycles) isCi defined asCi =

2Ti

ki (ki−1)
whereTi is the number of links among the neighbors of node
i. It follows that a node withk links participates onT (k) tri-
angles. For a given network withN nodes, the degree of the
node and Laplacianof the connectivity matrix are defined by
(McGraw and Menzinger, 2008; Samukhin et al., 2008):
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ki =

N∑
j=1

Aij ;Lij = Aij −kiδij (2)

where k, Aij , Lij are the degree ofi-th node, elements
of a symmetric adjacency matrix, and the network Lapla-
cian matrix, respectively. The eigenvalues3α are given by
N∑

j=1
Lijφ

α
j = 3αφα

i , in which φα
i is the i-th eigenvector of

the Laplacian matrix (α = 1,...,N). With this definition, all
eigenvalues are non-positive values. The inverse participa-
tion ratio as a criterion of the localization of eigenvectors is
defined by (McGraw and Menzinger, 2008):

P(φα) =

∑
i

φα
i

(
∑
i

(φα
i )2)2

;α = 1,...,N (3)

The maximum value ofP shows that the vector has only
one non-zero component. A higher value ofP corresponds
with a more localized vector. To understand the nature of en-
ergy propagation in obtained friction-networks, we activated
all the nodes simultaneously (i.e. a Kuramato model in con-
nected oscillators (Kuramoto, 1984). Diffusion of informa-
tion (ui) is expressed by a network mode of diffusion (Nakao
and Mikhailov, 2010; Arenas et al., 2008):

d

dt
ui(t) = f (ui)+ε

N∑
j=1

Lijuj (4)

wheref (ui) andε are local dynamics of each profile (node)
and a diffusion constant, respectively (in our simulation
f (ui) = 0;ε = 1). We used the synchronization criterion
of randomly (uniform) stimulated of nodes byM = lim

t→∞
<

|ui(t)−uj (t)| >i,j in which<. . .> denotes an average value
over all nodes after passing significant time steps. Here, we
assumed a frictional interface, which is pushed under a con-
stant driving stress. The storied energy in asperities is pro-
portional with elastic properties of asperities and contact ar-
eas. The changes in contacts are expressed in terms of fric-
tion laws such as rate and state or Coulomb’s friction laws
(Dieterich, 1978; Ruina, 1983). If we consider that there is
a long-range correlation among particles (elements) of the
interface, then the patterns of energy propagation (and stor-
age) will be dramatically affected by correlation patterns.
To better understand the nature of energy propagation, we
note the importance of local structures, determined by sub-
graphs. Analysis of the internal network structures is pre-
sented by sub-graphs and motifs. The sub-graphs are the
nodes within the network with the special shape(s) of con-
nectivity together. The relative abundance of sub-graphs has
been shown to be an index to the functionality of networks
with respect to information processing. Also, they correlate
with the global characteristics of the networks (Vazquez et
al., 2004; Boccaletti et al., 2006; Xu et al., 2008). The net-
work motifs introduced by Milo et al. (2002, 2004) are par-

ticular sub-graphs representing patterns of local interconnec-
tions between the nodes in the network. A motif is a sub-
graph that appears more than a certain amount (further cri-
teria can be found in secondary literature). A motif of size
k (containing k nodes) is called ak-motif (or generally sub-
graph). We employ the aforementioned approaches over the
networks of aperture profiles.

3 Results and discussion

In Fig. 2, we plotted the three parameters of the networks
through 20 mm shear displacements. After a transition stage,
the formation of 3-node loops (clustering coefficient) in
a parallel direction reaches a quasi-stable state, while the
perpendicular networks follow a growing trend (Fig. 2a).
This trend is reversed in the evolution of the nodes’ degree
(Fig. 2b), which shows the growth of the profiles’ long-range
correlations. The characteristic length of networks exhibits
a rapid drop after passing the interlocking step, where the
asperities are locked up. This stage occurs just after the
peak point of shear stress-displacement. However, for the
perpendicular-direction case analyzed, the transition point at
the same stage displayed a softer change (Fig. 2c). The sim-
ilarities among the three presented characteristics of the net-
works occur in the transformation from 1 mm to 2 mm of dis-
placement, where the rock joint under a certain value of nor-
mal stress passes the maximum frictional strength (see Fig. 1;
case 3). Furthermore, a consideration of 3-point cycles (T -
triangle loops) versus the nodes’ degree shows a power low
scaling (Fig. 2g, h):

T (k) ∼ kβ , (5)

where the best fit for the collapsed data set readsβ ≈

2± .3 (which we call a coupling coefficient of local and
global structures). With some mathematical analysis (see ap-
pendix), one can show that addingm edges increases the
number of loops withβ2mβ , which indicates a very con-
gested structure of global and local sub-graphs during shear
rupture. Also, we noticeC(k) ∼ 2kβ−2, so that forβ < 2, a
possible hierarchical structure can be predicted (Albert and
Barab́asi, 2002). Let us consider a simplified form of the
standard equation for the friction based on the rate and state
friction law (Dieterich, 1978), with an assumption of nearly
constant sliding velocity:τ ∼ σ ln θ

Dc
, in whichθ is the vari-

able describing the interface state, andDcis the characteristic
length for the evolution ofθ (τ is shear stress andσ is nor-
mal stress on the interface). The commonly used empirical
laws for evolution of state variable are Ruina’s laws for age-
ing and slipping states (Ruina, 1983). For slip law it reads
(with assumingv ≡ 1): ∂θ

∂t
∼ −

θ
Dc

ln θ
Dc

. Let us transfer the
state variable in terms of local and global characteristics of
the interface:

∂θi(t)

∂t
= a

∂ki

∂t
+b

∂Ti

∂t
(6)

Nonlin. Processes Geophys., 19, 215–225, 2012 www.nonlin-processes-geophys.net/19/215/2012/
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Figure 2. Characteristics of the friction-networks in parallel profiles-networks to shear 

direction (a -c) :a) Clustering coefficient-Shear Displacement (SD in mm);b) Number of 

edges-SD ; c) Average path length-SD; in transverse profiles-networks to shear 

direction (d -f) ; (g) X-profiles :scaling of triangles (T(k)-i.e., loops) with node’s degree(k) 

as a power law with 2.2β ≈ (inset shows the best fit linear line to collapsed Data set in 

natural logarithmic scale) .Also, We confirmed for real-time contact measures there is 

such universal power law [33];(h) Y-profiles (parallel to shear) a nearly same scaling 

with 2.1β ≈ .   

Fig. 2. Characteristics of the friction-networks in parallel profiles-networks to shear direction (a–c): (a) clustering coefficient-Shear Dis-
placement (SD in mm);(b) number of edges-SD ;(c) average path length-SD; in transverse profiles-networks to shear direction (d–f);
(g) X-profiles :scaling of triangles (T (k) – i.e. loops) with node’s degree(k) as a power law withβ ≈ 2.2 (inset shows the best fit linear line
to collapsed data set in natural logarithmic scale). Also, We confirmed for real-time contact measures there is such universal power law
(Ghaffari et al., 2011b);(h) Y-profiles (parallel to shear) a nearly same scaling withβ ≈ 2.1.

which we assumed that the evolution of the state variable is
associated with the evolution of local and global parameters
of friction network. We eventually obtain (with plugging 5
in 6):

∂θi(t)

∂t
=

∂ki

∂t
(a+bβk

β−1
i ) (7)

This relation indicates that with the assumption of an evolu-
tion law for the obtained networks, one can interpret friction
laws in terms of local and global structural complexities. For
example, let us assume that our network includes some “hub
nodes” that tend to absorb more loops; in other words ag-
gregation of loops around hubs. Assuming preferentiality at-
tachment (or detachment (Boccaletti et al., 2006; Albert and
Barab́asi, 2002), such a case leads to:

∂Ti(k)

∂t
∼ m

Ti∑
Tj

, (8)

in which m is a coefficient of growth (or decay). Plugging
Eq. (5) in Eq. (8) yields:

∂ki

∂t
∼

m

β

ki∑
k
β
j

(9)

For β = 1, the model yields scale-free networks (Albert and
Barab́asi, 2002). Assumingβ = 1 anda < 0 indicates a de-
caying model for the state parameter in terms of attacking to
hubs. Plugging Eq. (9) into Eq. (7) and assumingβ ≈ 2 leads
to:

∂θi(t)

∂t
=

2bmk2
i∑

k2
j

+
amki∑

k2
j

(10)
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Figure 3. Comparison of (a) hydraulic conductivity (measured through experimental 

laboratory tests- Data set courtesy of M.Sharifzadeh) and (b) the inverse of the mean 

geodesic length of the parallel aperture networks (flipping Y-axis) and (c) evolution of 

edges degree with displacements in semi-logarithmic scale.  

Fig. 3. Comparison of(a) hydraulic conductivity (measured through experimental laboratory tests – data set courtesy of M. Sharifzadeh)
and(b) the inverse of the mean geodesic length of the parallel aperture networks (flipping Y-axis) and(c) evolution of edges degree with
displacements in semi-logarithmic scale.

which shows a complex non-linear decaying nature of state
parameters. The first term in right hand of Eq. (10) is a non-
linear evolution of network with gel-like characteristic, i.e. a
single node is connected to almost all nodes in the friction
network. Further development of Eq. (10) with respect to
different network models will be addressed elsewhere.

In Fig. 3, we compared the results of experimental mea-
surements of hydraulic conductivity with the inverse of the
characteristic length in parallel profile networks (Fig. 3a,
b). The same temporal evolutionary trend can be observed
between the inverse of the parallel aperture profiles’ mean
geodesic length and the measured hydraulic conductivity. As
we have shown in Fig. 4, the evolution of mean geodesic
length coincides with the formation of clusters over the par-
allel networks. We have found that the rate of propagation of
information is much higher in the last evolutionary steps, as
compared to the initial development of the rock joint. This
difference is due to the congestion of contact areas, which

induce the trapping of the energy (Bowden and Tabor, 2001;
Rubinstein et al., 2004).

Comparing the number of edges in the parallel direction in
a semi-logarithmic graph shows the same trend for the evo-
lution of measured hydraulic conductivity (Fig. 3c). From
Fig. 4, it is clear that after a transition step the concentration
of edge growth is on certain profiles. This finding seems to
indicate the concentration of energy flow which is compara-
ble with betweenness centrality. This phenomenon is related
to the paths of fluid flow with the fracture and through porous
spaces (channelization). Observation of the same trend in the
inverse of the mean characteristic path and the permeabil-
ity evolution distinguishes the formed dynamic groups’ roles
over the obtained networks. To show the revealed groups’
evolution in friction networks, we use joint degree distri-
bution for both cases (parallel and perpendicular profiles).
This shows assortativity or hubness characteristics in the net-
works’ topology. In Figs. 5 and 6, we show the frequency
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Fig. 4. Development of the logarithmic scale of the node’s degree
over parallel-aperture profiles (vertical axis is proportional with Y-
axis) with shear slips (SD: in mm – horizontal axis). Rapid growth
of links occurs in portion of aperture patches.

of the joint degree distribution (the probability of finding
an edge with having two specified values of nodes degree)
for parallel and perpendicular profiles through the displace-
ments. The main appearance of the distinguished groups oc-
curs shortly after the slip-weakening distance (in this case
around 5 mm). Generally, the evolution of groups for both
cases is almost identical. This means that in the last stages,
the nodes with high and low degree connect to the high and
low degree nodes, respectively. Now, we analyse eigenvalues
and eigenvectors of a Laplacian matrix of networks, where
our primary interests are the localization of eigenvectors and
the patterns of eigenvalues spectrum.

Evaluation of the localization of eigenvectors for perpen-
dicular networks (based on Eq. 3 – Fig. 7) shows that local-
ization is propagating toward the inside of profiles from their
boundaries, while in parallel networks, after the interlocking
of asperities (SD∼ 1 mm) localization is following nearly
random patterns. For both cases, the boundary profiles are
much more localized than interior profiles. The localization
of eigenvectors is more remarkable in parallel profiles than
perpendicular ones. This confirms the Heisenberg localiza-
tion principle, which states that localization in data (here the
development of a frictional interface) can be related to local-
ization processes in a kernel matrix (adjacency matrix) spec-
trum (Coifman et al., 2005; Nakao and Mikhailov, 2010).
Implementation of Eq. (4) in the perpendicular friction net-
works proved that the synchronization of information in ini-
tial stages of the evolution is nearly 1000 times slower than
it is in the final, quasi-stable stages (Fig. 8). It is noteworthy
that the trends ofM with shear displacements (SD) are the
same as the temporal evolution of the characteristic length.
In other words, the characteristic length of friction networks
can be used as an index to the rate of radiated storied en-
ergy. Shorter characteristic length indicates faster radiation

of energy. Perpendicular networks are characterized by the
M value’s fast synchronization and long range of variations,
while the distance betweenM values in pre- and post-peak
stages is nearly one order. In our case study, it follows that
information propagation (entrapping of energy) through pro-
files is faster in perpendicular profiles than in parallel ones;
the rate of energy storage is controlled with perpendicular
patterns of contact patches. Here, one may assume that the
flux of energy is storied over the networks, while the topol-
ogy of the networks is invariant during the entrapping or de-
formation process Depending on the network structure, the
synchronization time (time until a steady state is reached)
will be different (Arenas et al., 2008; Oh et al., 2005). One
may infer that the trapping of energy in pre-peak stages is
faster than in post-peak stages. This is completely reasonable
in terms of the complex configuration of the contact areas
where it occurs before slip-weakening stage (unstable stage).
In parallel networks, the difference between maximum and
minimum ranges is within one order, while for perpendicular
networks, it is nearly 3 orders. This can be another reason to
the importance of perpendicular nature of friction networks
and their answer to environment stimuli.

Figure 9 shows the analysis of 4-point sub-graphs over
both perpendicular and parallel networks. An increase of
the abundance of sub-graph patterns in SD = 2 mm to 3 mm
(Fig. 9a) is in agreement with the mechanical deformation
and dilatancy of the fracture. Also, the drop in all sub-graphs
from SD = 0 mm to SD = 1 mm (Fig. 9b) is the index of an in-
terlocking and dramatic drop of the permeability. The com-
mon property for both perpendicular and parallel sub-graphs
is the main evolutionary trend of sub-graphs. For exam-
ple, after slip, the transient sub-graphs (index 6) show faster
growth and percolation over both networks. The same evo-
lutionary trend is predicted for directional profiles (neither
parallel nor perpendicular), indicating an identical mecha-
nism in the functionality of networks (the same mechanism
in fracture evolution). The rapid increment of index 6, no-
tably for parallel networks, is in absolute agreement with the
easy fluid flow in the residual stages of the sheared fracture.
The low value of index 2 and 4 shows the localization of
flow, i.e. the channelization effect. The appearance of in-
dex 2 and 4 is much more relevant to flow heterogeneity.
It follows that most transient sub-graphs resembling index
6 are accompanied by much more stable flow patterns. We
tested our approach on three other cases, where normal stress
values were varied. For all cases, the results of the 4-point
sub-graph analysis showed that index 4 and, relatively speak-
ing, index 2 displayed the minimum frequency (Ghaffari et
al., 2011a, b). Accordingly, we observed a similar trend, a
super-family phenomenon, for a variety of different cases of
shear rupture in sub-graphs distribution.
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Figure 5. Assortative networks in parallel-friction networks: Joint degree distribution 
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Fig. 5. Assortative networks in parallel-friction networks: joint degree distribution evolution through the successive displacements of the
rock joint (parallel profiles) from shear displacement 0 mm to 20 mm.
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Nonlin. Processes Geophys., 19, 215–225, 2012 www.nonlin-processes-geophys.net/19/215/2012/



H. O. Ghaffari and R. P. Young: Topological complexity of frictional interfaces: friction networks 223
 

9 
 

(a)

(b)

 
 
Figure 7. Evolution of the inverse participation factor for profiles in X and Y directions :a) 

perpendicular profiles are localized from boundaries to inside profiles.  b) Parallel 

profiles after interlocking of asperities (SD~1mm) are nearly following random 

localization.   

Fig. 7. Evolution of the inverse participation factor for profiles in
X and Y directions:(a) perpendicular profiles are localized from
boundaries to inside profiles.(b) Parallel profiles after interlocking
of asperities (SD∼ 1 mm) are nearly following random localization.

4 Conclusion

In this study we characterized the spatial structural complex-
ity of apertures using networks and the idea of the long-range
correlation of patterns. We analysed friction-networks and
tried to link the complex friction patterns to networks param-
eters. This led to a linking between classical friction for-
mulations and the corresponding network parameters. The
characteristics of the networks scaled with mechanical and
hydraulic properties of a frictional interface. Information
propagation through profiles was found to be much faster in
perpendicular profiles, as compared to parallel profiles. We
found that there is a universal power law between the degrees
of nodes and sub-graph frequency, which indicates a fast lo-
calization of clusters around hubs. Based on this scaling law
and state-rate friction relations, we developed a mathematical
framework for friction-networks. Comparison of synchro-
nization patterns with the localization of eigenvectors from
the Laplacian of the connectivity matrix showed an inverse
relation between localization and synchronization. From an-
other point view, it seems that localized eigenvectors are
leading most of the energy flux. We found the same temporal
evolutionary trend in the inverse of the mean geodesic length
of the parallel aperture profiles with the measured hydraulic
conductivity (upon different inlet water pressures). The latter
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Fig. 8. Convergence of the synchronization criterion (M) over 100
realizations (for each Shear Displacement – SD (mm)) of diffusion
based networks equation on(a) perpendicular and(b) parallel aper-
ture networks. The number of nodes in the model for all of the cases
is decreases to 250 nodes (1:4 scaling).

observation confirmed the role of huge clusters (groups) over
the parallel networks in conducting information. Motif anal-
ysis of different cases in shear rupture confirmed the same
inherent dynamic of sheared fracture, which yields a nearly
identical family of sub-graphs. The trend of different sub-
graphs roughly correlated with the fluid flow features. More
analysis is needed to better understand sub-graph distribution
and other properties of fluid flow in sheared fractures.

Appendix A

We show that adding a link to obtained networks increases
the number of 3-point cycles with a factor ofβ2.

T (k) ∼ kβ

www.nonlin-processes-geophys.net/19/215/2012/ Nonlin. Processes Geophys., 19, 215–225, 2012



224 H. O. Ghaffari and R. P. Young: Topological complexity of frictional interfaces: friction networks

 

11 
 

 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

1

10
2

10
3

10
4

10
5

 

 

SD=0
SD=1
SD=2
SD=3
SD=4
SD=5
SD=6

1 2 3 4 5 6

1 2 3 4 5 66
10

0

10
1

10
2

10
3

10
4

10
5

Subgraphs index

Fr
eq

ue
nc

y

Parallel Aperture Network-subgraphs

 

 

SD=0
SD=1
SD=2
SD=3
SD=4
SD=5
SD=6
SD=7
SD=8

1 2 3 4 5 6

(a)

(b)

 
Figure 9. Evolution of 4-points sub-graphs for profiles in X and Y directions 

though each shear slip (SD, mm): a) perpendicular profiles, b) Parallel profiles. Fig. 9. Evolution of 4-points sub-graphs for profiles in X and Y
directions though each shear slip (SD, mm):(a) perpendicular pro-
files, (b) parallel profiles.

T (k+1) ∼ (k+1)β = kβ(1+
1

k
)β ≡

∼T (k)︷︸︸︷
kβ

∑
∞

n=0

(
β

n

)
k−n

T (k+1)

T (k)
∼

∑
∞

n=0

(
β

n

)
k−n

≈

∑
∞

n=0

β(β−1)...(β−n+1)

n!
k−n

≈ β2
(

1+
β

k

)
For largek, It reads:T (k+1)

T (k)
∼ β2.
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