6,843 research outputs found

    A closer look at a coronal loop rooted in a sunspot umbra

    Full text link
    Extreme UV (EUV) and X-ray loops in the solar corona connect regions of enhanced magnetic activity, but they are not usually rooted in the dark umbrae of sunspots because the strong magnetic field found there suppresses convection. This means that the Poynting flux of magnetic energy into the upper atmosphere is not significant within the umbra as long as there are no light bridges or umbral dots. Here we report a rare observation of a coronal loop rooted in the dark umbra of a sunspot without any traces of light bridges or umbral dots. We used the slit-jaw images and spectroscopic data from IRIS and concentrate on the line profiles of O IV and Si IV that show persistent strong redshifted components in the loop rooted in the umbra. Using the ratios of O IV, we can estimate the density and thus investigate the mass flux. The coronal context and temperature diagnostics of these observations is provided through the EUV channels of AIA. The coronal loop, embedded within cooler downflows, hosts supersonic downflows. The speed of more than 100 km s1^{-1} is on the same order of magnitude in the transition region lines of O IV and Si IV, and is even seen at comparable speed in the chromospheric Mg II lines. At a projected distance of within 1"1" of the footpoint, we see a shock transition to smaller downflow speeds of about 15 km s1^{-1} being consistent with mass conservation across a stationary isothermal shock. We see no direct evidence for energy input into the loop because the loop is rooted in the dark uniform part of the umbra with no light bridges or umbral dots near by. Thus one might conclude that we are seeing a siphon flow driven from the footpoint at the other end of the loop. However, for a final result data of similar quality at the other footpoint are needed, but this is too far away to be covered by the IRIS field of view.Comment: Accepted for publication in Astronomy and Astrophysics (abridged abstract

    IRIS observations of magnetic interactions in the solar atmosphere between pre-existing and emerging magnetic fields. II. UV emission properties

    Get PDF
    Multi-wavelength ultraviolet (UV) observations by the IRIS satellite in active region NOAA 12529 have recently pointed out the presence of long-lasting brightenings, akin to UV bursts, and simultaneous plasma ejections occurring in the upper chromosphere and transition region during secondary flux emergence. These signatures have been interpreted as evidence of small-scale, recurrent magnetic reconnection episodes between the emerging flux region (EFR) and the pre-existing plage field. Here, we characterize the UV emission of these strong, intermittent brightenings and we study the surge activity above the chromospheric arch filament system (AFS) overlying the EFR. We analyze the surges and the cospatial brightenings observed at different wavelengths. We find an asymmetry in the emission between the blue and red wings of the Si IV 1402 \AA{} and Mg II k 2796.3 \AA{} lines, which clearly outlines the dynamics of the structures above the AFS that form during the small-scale eruptive phenomena. We also detect a correlation between the Doppler velocity and skewness of the Si IV 1394 \AA{} and 1402 \AA{} line profiles in the UV burst pixels. Finally, we show that genuine emission in the Fe XII 1349.4 \AA{} line is cospatial to the Si IV brightenings. This definitely reveals a pure coronal counterpart to the reconnection event.Comment: 19 pages, 8 figures + 3 figures in the Appendix; accepted in Ap

    Food Acceptability, Menu Fatigue, and Aversion on ISS Missions

    Get PDF
    The acceptability of the spaceflight food system has been linked to caloric intake and associated nutritional benefits. The diets of the United States Operating Segment crewmembers during a mission are restricted to 200 processed and prepackaged standard menu items supplemented with personal preference foods. ISS crew members have noted in debriefs that they would prefer more food variety for the length of the missions and they tire of certain foods over six months. It is possible that menu fatigue leads to decreases in acceptability and increased aversion to available foods, potentially contributing to the body mass loss often experienced by ISS crew. However, the impact of repeat food consumption on acceptability within the current spaceflight food system has not yet been systematically investigated. Limited variety and crew preferences within food categories may have more severe physical and behavioral health and performance consequences as mission duration increases. Characterizing the relationship between food acceptability and mission duration will contribute to defining requirements for an acceptable food system that will support crew health and performance on long duration missions

    The Paper Trail: An Arid Connection & A Book of a Thousand Plants

    Get PDF
    Following my Ph.D., I moved on to Nebraska, where as a beginning faculty member I was able to start a research program in ecology and continue to study what intrigued me most: plant competition and stress. It was during this time that I came across the paper by Peter Alpert (see his article below) and his colleagues on “Invasiveness, invasibility, and the role of environmental stress in preventing the spread of non-native plants” (Perspectives in Plant Ecology, Evolution and Systematics 3:52–66). It was an “aha” moment in reading about biological invasion research and the current consensus at that time regarding invasiveness and invasibility in plant species and communities. I had seen first-hand or at least I had thought about things like nonnatives remaining noninvasive for long periods, the relationship between plasticity and invasiveness, and the “unlike invader” hypothesis, which were all touched on in the paper. Add to this the discussion on the topic of stress (e.g., drought) affecting invasibility and the conceptual diagrams showing hypothetical responses of native and nonnatives under minimum and maximum levels, and I was convinced that my ideas were similar to those of others. For the first time, I did not feel alone in my thinking. In a way, it was a newfound freedom that allowed me to ponder more deeply the effects of stress on invasive plants. Extreme drought is a type of stress or selection pressure imposed on plants and communities of plants that can reveal fitness and plasticity differences that if understood could have profound impacts on invasion and community assembly theory

    RISK PERCEPTIONS AND MANAGEMENT RESPONSES: PRODUCER-GENERATED HYPOTHESES FOR RISK MODELING

    Get PDF
    Farm level risk analyses have used price and yield variability almost exclusively to represent risk. Results from a survey of 149 agricultural producers in 12 states indicate that producers consider a broader range of sources of variability in their operations. Significant differences exist among categories with respect to the importance of the sources of variability in crop and livestock production. Producers also used a variety of management responses to variability. There were significant difference among categories in the importance given to particular responses and their use of them. These results have implications for research, extension, and policy programs.Risk and Uncertainty,

    Structure and composition of Pluto's atmosphere from the New Horizons solar ultraviolet occultation

    Get PDF
    The Alice instrument on NASA's New Horizons spacecraft observed an ultraviolet solar occultation by Pluto's atmosphere on 2015 July 14. The transmission vs. altitude was sensitive to the presence of N_2, CH_4, C_2H_2, C_2H_4, C_2H_6, and haze. We derived line-of-sight abundances and local number densities for the 5 molecular species, and line-of-sight optical depth and extinction coefficients for the haze. We found the following major conclusions: (1) We confirmed temperatures in Pluto's upper atmosphere that were colder than expected before the New Horizons flyby, with upper atmospheric temperatures near 65–68 K. The inferred enhanced Jeans escape rates were (3–7) × 10^(22) N_2 s^(−1) and (4–8) × 10^(25) CH_4 s^(−1) at the exobase (at a radius of ∼ 2900 km, or an altitude of ∼1710 km). (2) We measured CH_4 abundances from 80 to 1200 km above the surface. A joint analysis of the Alice CH_4 and Alice and REX N_2 measurements implied a very stable lower atmosphere with a small eddy diffusion coefficient, most likely between 550 and 4000 cm^2 s^(−1). Such a small eddy diffusion coefficient placed the homopause within 12 km of the surface, giving Pluto a small planetary boundary layer. The inferred CH_4 surface mixing ratio was ∼ 0.28–0.35%. (3) The abundance profiles of the “C_2H_x hydrocarbons” (C_2H_2, C_2H_4, C_2H_6) were not simply exponential with altitude. We detected local maxima in line-of-sight abundance near 410 km altitude for C_2H_4, near 320 km for C_2H_2, and an inflection point or the suggestion of a local maximum at 260 km for C_2H_6. We also detected local minima near 200 km altitude for C_2H_4, near 170 km for C_2H_2, and an inflection point or minimum near 170–200 km for C_2H_6. These compared favorably with models for hydrocarbon production near 300–400 km and haze condensation near 200 km, especially for C_2H_2 and C_2H_4 (Wong et al., 2017). (4) We found haze that had an extinction coefficient approximately proportional to N_2 density

    Structure and composition of Pluto's atmosphere from the New Horizons solar ultraviolet occultation

    Get PDF
    The Alice instrument on NASA's New Horizons spacecraft observed an ultraviolet solar occultation by Pluto's atmosphere on 2015 July 14. The transmission vs. altitude was sensitive to the presence of N_2, CH_4, C_2H_2, C_2H_4, C_2H_6, and haze. We derived line-of-sight abundances and local number densities for the 5 molecular species, and line-of-sight optical depth and extinction coefficients for the haze. We found the following major conclusions: (1) We confirmed temperatures in Pluto's upper atmosphere that were colder than expected before the New Horizons flyby, with upper atmospheric temperatures near 65–68 K. The inferred enhanced Jeans escape rates were (3–7) × 10^(22) N_2 s^(−1) and (4–8) × 10^(25) CH_4 s^(−1) at the exobase (at a radius of ∼ 2900 km, or an altitude of ∼1710 km). (2) We measured CH_4 abundances from 80 to 1200 km above the surface. A joint analysis of the Alice CH_4 and Alice and REX N_2 measurements implied a very stable lower atmosphere with a small eddy diffusion coefficient, most likely between 550 and 4000 cm^2 s^(−1). Such a small eddy diffusion coefficient placed the homopause within 12 km of the surface, giving Pluto a small planetary boundary layer. The inferred CH_4 surface mixing ratio was ∼ 0.28–0.35%. (3) The abundance profiles of the “C_2H_x hydrocarbons” (C_2H_2, C_2H_4, C_2H_6) were not simply exponential with altitude. We detected local maxima in line-of-sight abundance near 410 km altitude for C_2H_4, near 320 km for C_2H_2, and an inflection point or the suggestion of a local maximum at 260 km for C_2H_6. We also detected local minima near 200 km altitude for C_2H_4, near 170 km for C_2H_2, and an inflection point or minimum near 170–200 km for C_2H_6. These compared favorably with models for hydrocarbon production near 300–400 km and haze condensation near 200 km, especially for C_2H_2 and C_2H_4 (Wong et al., 2017). (4) We found haze that had an extinction coefficient approximately proportional to N_2 density
    corecore