5,218 research outputs found

    Design of a Gold Code Generator for Use in Code Division Multiple Access Communication System

    Get PDF
    A Gold code sequence generator suitable for use in a code division multiple access spread spectrum communication application is designed. A dual, single return shift register configuration is used to generate Gold code sequences. The code sequences are generated by the mod-2 addition of two linear maximal length pseudo-random noise codes, each of which corresponds to a sixth-order primitive polynomial. A computer model of the design is used to generate all 65 possible members of the Gold code sequence family. A tabulation of all sequences and their initial condition “keys” is provided, along with a designation as to which code sequences are balanced. The mathematical basis of maximal length sequence generation is developed, using first the matrix characterization of a shift register generator, and then switching to the alternate treatment of a shift register generator as a polynomial division engine. The link between the matrix representation and the polynomial representation via the characteristic equation, the use of the generating function, and the three mathematical properties required of polynomials which are capable of generating maximal length sequences are described. Gold’s algorithm for selecting preferred polynomial pairs is presented, as is his technique for determining the characteristic phase of a maximal length sequence. The actual Gold code generator is then designed and modeled in software. All Gold code sequences output from the generator are tabulated. The family of sequences is evaluated in terms of its randomness properties. Finally, the results of computer analysis of the auto and cross-correlation characteristics of the family is summarized

    Restoration of Sp4 in Forebrain GABAergic Neurons Rescues Hypersensitivity to Ketamine in Sp4 Hypomorphic Mice.

    Get PDF
    BackgroundKetamine produces schizophrenia-like behavioral phenotypes in healthy people. Prolonged ketamine effects and exacerbation of symptoms after the administration of ketamine have been observed in patients with schizophrenia. More recently, ketamine has been used as a potent antidepressant to treat patients with major depression. The genes and neurons that regulate behavioral responses to ketamine, however, remain poorly understood. Sp4 is a transcription factor for which gene expression is restricted to neuronal cells in the brain. Our previous studies demonstrated that Sp4 hypomorphic mice display several behavioral phenotypes relevant to psychiatric disorders, consistent with human SP4 gene associations with schizophrenia, bipolar disorder, and major depression. Among those behavioral phenotypes, hypersensitivity to ketamine-induced hyperlocomotion has been observed in Sp4 hypomorphic mice.MethodsIn the present study, we used the Cre-LoxP system to restore Sp4 gene expression, specifically in either forebrain excitatory or GABAergic inhibitory neurons in Sp4 hypomorphic mice. Mouse behavioral phenotypes related to psychiatric disorders were examined in these distinct rescue mice.ResultsRestoration of Sp4 in forebrain excitatory neurons did not rescue deficient sensorimotor gating nor ketamine-induced hyperlocomotion. Restoration of Sp4 in forebrain GABAergic neurons, however, rescued ketamine-induced hyperlocomotion, but did not rescue deficient sensorimotor gating.ConclusionsOur studies suggest that the Sp4 gene in forebrain GABAergic neurons regulates ketamine-induced hyperlocomotion

    Effect of methamphetamine dependence on inhibitory deficits in a novel human open-field paradigm.

    Get PDF
    RationaleMethamphetamine (MA) is an addictive psychostimulant associated with neurocognitive impairment, including inhibitory deficits characterized by a reduced ability to control responses to stimuli. While various domains of inhibition such as exaggerated novelty seeking and perseveration have been assessed in rodents by quantifying activity in open-field tests, similar models have not been utilized in human substance abusers. We recently developed a cross-species translational human open-field paradigm, the human behavior pattern monitor (hBPM), consisting of an unfamiliar room containing novel and engaging objects. Previous work demonstrated that manic bipolar subjects exhibit a disinhibited pattern of behavior in the hBPM characterized by increased object interactions.ObjectivesIn the current study, we examined the effect of MA dependence on inhibitory deficits using this paradigm. hBPM activity and object interactions were quantified in 16 abstinent MA-dependent individuals and 18 matched drug-free comparison subjects. The Wisconsin card sorting task (WCST) and the positive and negative syndrome scale (PANSS) were administered to assess executive function and psychopathology.ResultsMA-dependent participants exhibited a significant increase in total object interactions, time spent with objects, and perseverative object interactions relative to comparison subjects. Greater object interaction was associated with impaired performance on the WCST, higher PANSS scores, and more frequent MA use in the past year.ConclusionsAbstinent MA-dependent individuals exhibited impaired inhibition in the hBPM, displaying increased interaction with novel stimuli. Utilization of this measure may enable assessment of inhibitory deficits relevant to drug-seeking behavior and facilitate development of intervention methods to reduce high-risk conduct in this population

    Annular Engine Development Status

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106479/1/AIAA2013-3892.pd

    MeV measurements of γ-ray bursts by CGRO-COMPTEL: Revised catalog

    Get PDF
    The imaging COMPTEL telescope has accumulated 0.1–30 MeV spectra, time-histories, and positions of more than forty γ-ray bursts within its ∼3 sr field of view in the eight years since its launch. CGRO-COMPTEL measures in both imaging “telescope” and single detector “burst spectroscopy” mode. In an ongoing collaboration with BACODINE/GCN, bursts are imaged automatically, with localizations relayed to a global network of multiwavelength observers in near real time (∼10 minutes). We have updated our burst search procedure in two ways: 1) using more sensitive search algorithms; and 2) using data from more detectors. The first are double change-point algorithms. With these we can find regions of significant excess flux with no assumptions on the wide range of burst time-scales (e.g., rise-times or decay-times) or intensities, and only one adjustable parameter (the time-averaged count-rate of the detectors). This makes it simpler to combine information on burst time-histories from the larger effective area (but cruder time bins) burst spectroscopy detectors, and hence better pinpoint the best times for imaging each burst. We report the eight bursts detected during 1998–1999

    Spectra of a recent bright burst measured by CGRO-COMPTEL: GRB 990123

    Get PDF
    CGRO-COMPTEL measures gamma-ray burst positions, time-histories and spectra in the 0.1–30 MeV energy range, in both imaging “telescope” and single detector “burst spectroscopy” mode. GRB 990123, one of the most recent bright bursts seen by COMPTEL, was caught in the optical while the gamma-ray emission was ongoing. The burst spectral shape can be characterized by a peak in ν−Fν just below 1 MeV and a power-law tail above(photon index∼−2.4,) and flattening below. There is also spectral evolution by downward movement of the peak and/or softening of the power laws. We present light-curves, time resolved spectra and an image map for this burst

    Development Status of High-Thrust Density Electrostatic Engines

    Get PDF
    Ion thruster technology offers the highest performance and efficiency of any mature electric propulsion thruster. It has by far the highest demonstrated total impulse of any technology option, demonstrated at input power levels appropriate for primary propulsion. It has also been successfully implemented for primary propulsion in both geocentric and heliocentric environments, with excellent ground/in-space correlation of both its performance and life. Based on these attributes there is compelling reasoning to continue the development of this technology: it is a leading candidate for high power applications; and it provides risk reduction for as-yet unproven alternatives. As such it is important that the operational limitations of ion thruster technology be critically examined and in particular for its application to primary propulsion its capabilities relative to thrust the density and thrust-to-power ratio be understood. This publication briefly addresses some of the considerations relative to achieving high thrust density and maximizing thrust-to-power ratio with ion thruster technology, and discusses the status of development work in this area being executed under a collaborative effort among NASA Glenn Research Center, the Aerospace Corporation, and the University of Michigan

    MeV measurements of gamma-ray bursts by CGRO-COMPTEL

    Get PDF
    Since the launch of the Compton Gamma-Ray Observatory in April 1991, the imaging COMPTEL telescope has accumulated positions and 0.75–30 MeV spectra of more than thirty gamma-ray bursts within its ∼π sr field of view. In an ongoing collaboration with BACODINE/GCN, COMPTEL positions are relayed to a global network of multiwavelength observers in near real time (∼10 minutes). Here we summarize the MeV properties, and present spatial, spectral, and temporal data for the latest of these events, GRB 970807. In concurrence with earlier SMM and current BATSE, OSSE, and EGRET measurements, COMPTEL data add to the accumulating evidence that GRB spectra do seem to have a characteristic shape: a peak (inE2F(E) ) around several hundred keV; and a power law above (spectral index 1.5–3.5) extending beyond the COMPTEL energy range

    Factor analysis of attentional set-shifting performance in young and aged mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Executive dysfunction may play a major role in cognitive decline with aging because frontal lobe structures are particularly vulnerable to advancing age. Lesion studies in rats and mice have suggested that intradimensional shifts (IDSs), extradimensional shifts (EDSs), and reversal learning are mediated by the anterior cingulate cortex, the medial prefrontal cortex, and the orbitofrontal cortex, respectively. We hypothesized that the latent structure of cognitive performance would reflect functional localization in the brain and would be altered by aging.</p> <p>Methods</p> <p>Young (4 months, n = 16) and aged (23 months, n = 18) C57BL/6N mice performed an attentional set-shifting task (ASST) that evaluates simple discrimination (SD), compound discrimination (CD), IDS, EDS, and reversal learning. The performance data were subjected to an exploratory factor analysis to extract the latent structures of ASST performance in young and aged mice.</p> <p>Results</p> <p>The factor analysis extracted two- and three-factor models. In the two-factor model, the factor associated with SD and CD was clearly separated from the factor associated with the rest of the ASST stages in the young mice only. In the three-factor model, the SD and CD loaded on distinct factors. The three-factor model also showed a separation of factors associated with IDS, EDS, and CD reversal. However, the other reversal learning variables, ID reversal and ED reversal, had somewhat inconsistent factor loadings.</p> <p>Conclusions</p> <p>The separation of performance factors in aged mice was less clear than in young mice, which suggests that aged mice utilize neuronal networks more broadly for specific cognitive functions. The result that the factors associated with SD and CD were separated in the three-factor model may suggest that the introduction of an irrelevant or distracting dimension results in the use of a new/orthogonal strategy for better discrimination.</p
    corecore