Design of a Gold Code Generator for Use in Code Division Multiple Access Communication System

Mark W. Young
University of Central Florida

Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd
University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

STARS Citation

Young, Mark W., "Design of a Gold Code Generator for Use in Code Division Multiple Access Communication System" (1985). Retrospective Theses and Dissertations. 4798.
https://stars.library.ucf.edu/rtd/4798

DESIGN OF A GOLD CODE GENERATOR FOR USE IN A CODE
 DIVISION MULTIPLE ACCESS COMMUNICATION SYSTEM

B Y
MARK WILLIAM YOUNG
B.S.E., University of Central Florida, 1982

THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering in the Graduate Studies Program of the College of Engineering University of Central Florida Orlando, Florida

ABSTRACT

```
            A Gold code sequence generator suitable for use in a
code division multiple access spread spectrum
communication application is designed. A dual, single
return shift register configuration is used to generate
Gold code sequences. The code sequences are generated by
the mod-2 addition of two linear maximal length
pseudo-random noise codes, each of which corresponds to a
sixth-order primitive polynomial. A computer model of the
design is used to generate all 65 possible members of the
Gold code sequence family. A tabulation of all sequences
and their initial condition "keys" is provided, along with
a designation as to which code sequences are balanced.
    The mathematical basis of maximal length sequence
generation is developed, using first the matrix
characterization of a shift register generator, and then
switching to the alternate treatment of a shift register
generator as a polynomial division engine. The link
between the matrix representation and the polynomial
representation via the characteristic equation, the use of
the generating function, and the three mathematical
properties required of polynomials which are capable of
generating maximal length sequences are described. Gold's
algorithm for selecting preferred polynomial pairs is
```

```
presented, as is his technique for determining the
characteristic phase of a maximal length sequence.
    The actual Gold code generator is then designed and
modeled in software. All Gold code sequences output from
the generator are tabulated. The family of sequences is
evaluated in terms of its randomness properties. Finally,
the results of computer analysis of the auto and
cross-correlation characteristics of the family is
summarized.
```


ACKNOWLEDGEMENTS

I would like to thank two people whose help was instrumental in the successful completion of this thesis.
The first is Dr. Madjid Belkerdid, my academic advisor during my graduate and undergraduate years at the University and chairman of my thesis advisory committee. His wise counsel and always-ready willingness to help with the tough problems has helped to make my years of study both extremely productive and, in retrospect, thoroughly enjoyable.
The second person to whom I owe much thanks is my wife, Donna. In addition to doing all the typing of this manuscript, she has provided unfailing emotional support throughout my long years of study. To these two people, I say a heartfelt "thank you."

$$
\begin{gathered}
\text { M.W. Y. } \\
1985
\end{gathered}
$$

TABLE OF CONTENTS

LIST OF TABLES vi
LIST OF FIGURES vii
INTRODUCTION 1
PROPERTIES OF PSEUDO-RANDOM NOISE CODES 5
Shift Register Sequences 6
The Randomness Postulates 9
Maximal Length Sequences 13
Advantages of Gold Codes 17
GENERATION OF GOLD CODES 20Mathematical Description of a ShiftRegister Generator 20
The Generating Function and
Characteristic Equation 23
Properties of Polynomials Which Generate Maximal Length Sequences 25
Gold's Preferred Polynomial Pair Algorithm 29
The Characteristic Phase of a Maximal Length Sequence 32
DESIGN OF A GOLD CODE GENERATOR 35
Selection of the Preferred Pair 36
Implementation - Design of the Generator 38
Representation of the Generator with a Mathematical Model 39
Designation of Initial Condition Keys 43
Calculation of Characteristic Phase Sequences 44
Generation of the Gold Code Family 47
PERFORMANCE EVALUATION AND ANALYSIS 53
Run-Length Distribution Analysis 56
Identification of Balanced Members of the Family 56
Correlation Analysis 59
Correlation Analysis Program Description 63
SUMMARY 67
APPENDIX 72
LIST OF REFERENCES 127

1. Characteristic Phase Sequence of Each Shift Register Generator 48
2. Set of Gold Code Sequences and Their Initial Condition Keys 51
3. Run-Length Distributions of the First Ten Gold Codes 57
4. Predicted Correlation Values for Gold Code Family Members With Sequence Length $L=2^{n}-1$ 61
5. Maximum Normalized Cross-Correlation Values For Gold Code Sequence Degrees From 5 to 21 62

LIST OF FIGURES

1. Single Return Shift Register Sequence Generator. 8
2. Derivation of the $\overline{\mathrm{A}}$ Matrix 21
3. Gold Code Generator 404. Equivalent Single Shift Register Implementationof the Gold Code Generator55

INTRODUCTION

A spread spectrum system is one in which a message signal to be transmitted is spread over a frequency band much, much wider than the minimum bandwidth that would otherwise be required to transmit it. In a general sense, spectrum spreading is accomplished by twice modulating a carrier, once with the message signal, and then again with a wideband encoding signal. The wideband encoding signal, for most all spread spectrum systems, is usually some pseudo-randomlike waveform generated from either a linear or non-1inear binary code sequence. The type of carrier modulation employed, and the method by which the wideband encoding signal is used to spread the resulting spectrum, defines the type of spread spectrum system.

Usually, the message signal is first converted to a binary waveform via some sampling process. It is then mod-2 added to the pseudo-random noise waveform. The composite wideband encoding-message signal is next used in one of several ways.

In frequency hopping spread spectrum systems, some type of FSK (frequency shift keying) modulation technique is usually employed. The pseudo-random encoding waveform, representing a sequence of zeros and ones of length n, is decoded into one of its 2^{n} possible states. Each state is

```
made to correspond to one frequency output from a signal
generator or frequency synthesizer which can generate any
of the 2 n}\mathrm{ possible frequencies. Each time the encoded
sequence changes, the frequency output from the generator
"hops" in unison. In essence, a frequency hopping system
employs many different carrier frequencies. Which
frequency is output varies pseudo-randomly as does the
encoding waveform. The signal generator employed
distributes the frequencies across the desired spread
spectrum band. Therefore the rate at which the code varies
determines the "hop" rate of the system, but does not
directly set the system's bandwidth.
    Time hopping spread spectrum systems usually use some
type of pulse coded modulation technique. The
pseudo-random encoding signal is used in effect to switch
the transmitter "on" and "off."
    Unlike frequency hopping systems which use many
different carrier frequencies, direct sequence spread
spectrum systems usually only employ one or two carrier
frequencies. In systems employing BPSK (binary phase shift
keying) or QPSK (quadrature phase shift keying)
modulation, the pseudo-random waveform is used to modulate
the phase of a single carrier. In systems employing MSK
(minimum shift keying) modulation, it is used to modulate
both carrier phase and carrier frequency, usually two
different phases of two different tone frequencies. Also
```

unlike frequency hopping systems, the bandwidth of the spread spectrum signal is directly dependent on the code rate. Faster code rates imply greater bandwidth.

A fourth type of spread spectrum system is the pulsed FM, or chirp system. Unlike other spread spectrum techniques, this one usually does not employ a pseudo-random noise code to generate wideband modulated signals, but more often depends on common linear frequency sweep techniques. This type of spread spectrum scheme is usually used in radar and ranging applications.

In addition, there are various hybrid configurations which combine two or more of the above techniques to some advantage. No matter which technique is used, however, a fundamental tradeoff is always involved, that of exchanging valuable RF spectral bandwidth for some combination of performance enhancements and features. These enhancements and features come about either as a direct result of the great increase of bandwidth, or because of the coded modulating signal format, or both. These features include: improved interference rejection (against natural and receiver noise, and intentional jamming), the ability to hide low power signals in the ever-present power spectral density noise floor and recover them reliably, provision for message screening and encryption, the capability to selectively address remote receivers, and the opportunity to enable multiple access

```
of many different signals to a single channel by the use
of code division multiplexing.
    Code division multiplexing techniques are especially
suited to direct sequence spread spectrum systems in that
a transmitter generating a single carrier frequency can be
used to transmit signals from many different sources
simply by changing the pseudo-random code sequence used to
toggle the phase of the output signal. If the code
sequences are properly chosen to ensure low
cross-correlation, multiple coded signals can occupy the
same frequency band at the same time and still be
successfully differentiated at their respective receivers.
    There are families of pseudo-random noise code
sequences, the so-called Gold codes, which do possess very
attractive cross-correlation characteristics. This and
several other properties make Gold codes nearly ideal for
use in code division multiple access spread spectrum
communications applications. In this paper, these
desirable properties are investigated in some detail, and
a Gold code pseudo-random pulse generator is designed and
computer modeled to generate one entire family of Gold
code sequences.
```

Gold codes are code sequences generated by the mod-2 addition of a pair of linear maximal length pseudo-random noise (PN) code sequences. Selection of a proper pair of maximal length sequences will produce a set of codes which possess characteristics ideally suited for code divison multiple access applications. Since maximal length pN code generators are integral components of a Gold code generator, the analysis of Gold codes is prefaced with PN code theory.

A distinction between sequences and waveforms must first be stated. A waveform is a time domain representation of an analog signal which possesses as characteristics amplitude, phase, and frequency content, among others. A sequence is a digitized, quantized series of ones and zeros. A zero or a one is a symbol representing one of two possible logic states which a waveform may be said to be in within some interval of time. In the parlance of spread spectrum communications, this interval of time is referred to as the chip time, and it is common practice to refer to individual ones and zeros in a code sequence as chips. The chip rate is then the rate at which a code generator outputs sequences of ones and zeros. An alternate and slightly different
interpretation of the term "chip" is implied when used in the context of frequency hopping signal generators, where a chip is defined to be one of the output frequencies of the generator. Chip time is then the amount of time occupied by that particular frequency, and chip rate is the frequency hopping rate.

This paper deals exclusively with sequences, series of ones and zeros and the properties they possess, with the implicit understanding that in actual applications waveforms will ultimately be generated from corresponding sequences.

Shift Register Sequences

The code sequences to be studied are all generated by means of one or more shift registers with associated feedback logic. This feedback logic is designed to feed back some logical combination of the state of two or more of the shift register's stages to its input stage. For this reason, the sequences so generated are also referred to as shift register sequences. Shift register sequences are cyclic in nature, that is, the sequence repeats itself continuously as long as the shift register stages are clocked.

The sequence length is defined to be the number of chips (i.e., the number of ones and zeros) in each full, repeating cycle of the sequence. The chip rate is then the

```
clock rate of the shift register, and the chip time is the
time interval between successive active edges of the shift
register clock pulses.
    A shift register sequence may possess transients that
are made up of a non-cyclic sequence of ones and zeros
which are generated before the generator begins its cyclic
sequence. Shift register generators which feed back
multiple logical combinations of output stages to more
than one shift register stage are known as multiple return
shift register generators. Those which return only one
logical combination to the first shift register stage are
termed single return shift register generators. It has
been shown that every multiple return shift register
generator has an equivalent single return shift register
configuration, if the sequence it outputs contains no
transients [Holmes 1982].
    The sequence output from a shift register may be
either linear or non-linear. It has been stated
[Holmes 1982] that a shift register generates a linear
sequence if the feedback function can be expressed as a
mod-2 sum.
All sequences considered in this paper are linear
sequences, and all shift register configurations used are
of the single return variety. Figure 1, part a,
illustrates a typical single return shift register
implementation with D flip-flops and exclusive-or gates.
```


a.

b.

Figure 1 . Single Return Shift Register Sequence Generator. a) Typical Circuit.
b) Equivalent Block Diagram.

```
Figure 1, part b, is an equivalent, although more abstract
block diagram of the same generator.
```


The Randomness Postulates

In spread spectrum applications, regardless of the class of system, and irrespective of the type of
modulation employed, the spectrum-spreading waveform has to be deterministic so that the modulated signal can be despread and the information unambiguously recovered in the receiver. Yet for reasons cited earlier, this waveform must possess random, noiselike temporal and spectral
characteristics. For the spectrum-spreading waveform to possess these pseudo-random noiselike properties, the code sequence from which the waveform is generated must satisfy, to the greatest degree possible, three so-called ramdomness postulates [Holmes 1982].

The first randomness postulate is that the pseudo-random noise code sequence must possess the balance property. Given a code sequence of length L, the total number of ones in the sequence must not differ from the total number of zeros in the sequence by more than one, for every phase shift of the sequence. The significance of a code sequence containing an almost equal number of ones and zeros is that a waveform generated with such a sequence (assuming non-return-to-zero pulse shapes), and the resulting code modulated signal, will contain almost

```
no DC component. No DC component is of considerable
practical importance when the modulation scheme employed
requires suppression of the carrier component, for example
in a direct sequence spread spectrum system employing a
balanced modulator. The maximum amount of carrier
suppression is directly dependent upon the one and zero
balance of the coding waveform. This same balance
requirement is one of the reasons that the longest
possible code sequences are usually used in direct
sequence spread spectrum systems.
    The second randomness postulate is that the
pseudo-random noise code sequence must possess a
characteristic run-1ength distribution of ones and zeros.
A run is defined to be a consecutive series of ones or
zeros within a sequence, and the run length is the number
of ones or zeros in the series. In every sequence period,
the required distribution is that half of the runs (of
ones and zeros) have a length of one, one-fourth have a
length of two, one-eighth have a length of three, and so
on. Implied by this distribution is the fact that the
number of runs of ones of each length will be equal to the
number of runs of zeros of the same length.
    It has been shown by Tausworthe [1965] that if
a code sequence displays the above run-1ength
distribution, then the distribution of chips within the
sequence is statistically independent. This statistical
```

```
independence between subset components within the sequence further enhances its random-1ike characteristic.
The third randomness postulate is that the autocorrelation function of a pseudo-random code sequence must be two-valued.
First, the correlation function in the context of sequences of ones and zeros is defined. For the case of computing correlation functions between discretized, quantized series of ones and zeros, the usual mathematical operation of computing the integral of the product of a function and a (time) shifted version of itself or some other function over an interval simplifies to a simple comparison test between corresponding chips of the two sequences in question. Each corresponding chip pair is said to agree if both members of the pair have a value of one or both have a value of zero, and the pair is said to disagree if both are not one or not zero. The number of agreements and disagreements are tabulated as each chip pair of the two sequences is tested one by one. The resultant correlation value is then just the number of agreements minus the number of disagreements.
```

Correlation $=$ Total Agreements - Total Disagreements.

The autocorrelation function of a code sequence is
then the number of agreements minus the number of
disagreements as the code sequence is tested against a
phase shifted replica of itself, chip by chip. The cross-correlation function is likewise the number of agreements minus the number of disagreements as one code sequence is tested against a phase shifted version of a second sequence.

To satisfy this third randomness postulate, the autocorrelation function of a code sequence must be two-valued. Furthermore, the autocorrelation value corresponding to a zero shift, representing perfect correlation, should ideally be much larger than the other correlation value, which ideally should be as close to zero as possible.

To illustrate why this is a desirable property of a PN code, a brief reference to stochastic process theory is helpful. Non-bandlimited white Gaussian noise exhibits a flat power spectral density curve and therefore its autocorrelation function is represented as a single delta function at the origin [Stremler 1982]. Hence the autocorrelation function of a code sequence, and thus any waveform generated with it, which contains a single, large "spike" at zero shift and a small, constant value for all other shifts is seen to quite closely approximate the random white Gaussian noise autocorrelation function.

This two-valued autocorrelation property, with the peak value present at the zero shift point only, is an extremely important property from another point of view,
that of receiver synchronization. To despread, demodulate, and decode an incoming message successfully, the receiver's internal circuitry must quickly and reliably synchronize itself to the incoming signal. A received signal with the autocorrelation function described above is much easier to synchronize to than one with multiple correlation peaks. This reduces receiver complexity as well as the probability of false synchronization.

Maximal Length Sequences

It is possible to further classify shift register sequences as those which are maximal and those which are not. A maximal code, or a maximal length sequence, is by definition the longest code sequence that can be generated by a shift register generator employing a given number of stages or delay elements [Ziemer 1985]. If a shift register has n stages, then the longest sequence of ones and zeros possible, the maximal length sequence, has a length of $2^{n}-1$ chips. For an $n-s t a g e$ shift register generator, the feedback connections alone determine whether the sequence output is maximal or non-maximal.

A shift register generator designed to output a
maximal length sequence will generate one sequence only.

Initial conditions loaded into the shift register prior to the start of a shift cycle only determine which phase shifted replica of the maximal length sequence's

```
characteristic phase is output. A non-maximal length shift
register generator on the other hand can output many
different sequences. Initial conditions loaded into its
shift register stages determine which sequence is
generated.
```

The subject of characteristic phases and initial conditions is of considerable importance for the Gold code generator design to follow, and both topics are treated in some detail in the following sections.

The near ideal characteristics of maximal length code sequences has caused them to find widespread use in modern communications and ranging systems. other types of 1 inear codes can do no better than equal their performance in systems employing single coded signals, and maximal length code characteristics are standards against which other codes are measured.

Most importantly, maximal length sequences satisfy
the three randomness postulates almost to the letter. For this reason, the terms maximal length sequence and pseudo-random noise code (PN code) are often used synonymously in the literature.

Every maximal length code exhibits the balance
property. Specifically, given an output sequence from an n-stage maximal length shift register generator, the total number of ones will be $2^{n} / 2$ and the total number of zeros will be $2^{n} / 2-1$ [Dixon 1984]. Thus the total number of ones

```
exceeds the total number of zeros by one, and the first
randomness postulate is satisfied.
    Every maximal length sequence exhibits a near ideal
run-length distribution. Work by Freymodsson [Dixon 1984]
has demonstrated that there are exactly 2 n-(p+2) runs of
length p for both ones and zeros in every maximal length
code sequence, with the exception that there is only one
run containing n ones and one run containing n-1 zeros,
which is to say that there are no zero runs of length n or
runs of ones of length n-1. Hence the second randomness
postulate is satisfied.
    Finally, every maximal length sequence exhibits a
binary-valued autocorrelation function [Dixon 1984].
Assuming that the correlation computation is performed
over the entire sequence length, the autocorrelation
function will have a value of 2 n}-1 for a zero phas
shift, and a value of -1 for every other phase shift.
    Other properties of interest possessed by maximal
length sequences, or the shift register generators which
produce them, are stated below [Holmes 1982].
    Maximal length sequences can only be generated by
single return shift register generators which use an even
number of feedback taps. No generator with an odd number
of taps can generate a maximal length sequence.
    It is possible to reverse the order of the sequence
output from a shift register. If an n-stage single return
```


Abstract

shift register generator has feedback taps on stages n, k, m, ... and outputs some sequence, then the same sequence will be output, but in reverse order, from a generator with taps on stages $n, n-k, n-m$, ... assuming $n>m>k$.

A final feature of maximal length sequences, and one of particular interest from the point of view of Gold code generator design, is that they possess three special linear addition properties.

The first addition property is that if a maximal length sequence is mod-2 added to any phase shifted replica of itself, the resulting sequence is another replica of the original, but with a different phase shift. This property is important for a number of practical applications, and demonstrates the cyclic nature of maximal length sequences.

The second addition property is that if two maximal length sequences of different length, say n and r, are mod-2 added, the resulting composite sequence will have a length $\left(2^{n}-1\right)\left(2^{r}-1\right)$. Although not maximal, the composite sequence will be a segment of a longer maximal length sequence if the two shorter, original sequences are properly chosen.

The third and most important addition property, from the point of view of Gold code generation, is that if two maximal length sequences of the same length, L, are mod-2
added, the resulting sequence will also have a sequence length, L. The resulting composite sequence, although not maximal, will possess very desirable auto and cross-correlation properties if the two shorter, original maximal length sequences are properly chosen.

Advantages of Gold Codes

Gold code generators make use of this third linear addition property directly. Two maximal length sequences are selected, using Gold's selection algorithm described in the next section, and two corresponding shift register generators are designed to generate each sequence. The output of each generator is then mod-2 added, chip by chip, resulting in a composite, although non-maximal sequence which nevertheless possesses useful characteristics. A single generator configuration is capable of generating a whole set of gold code sequences. Each member of the set has well-behaved autocorrelation functions. Of even more importance, the cross-correlation among all members of the set is always bounded by some maximum value, which can be made arbitrarily small by selection of longer and longer sequence lengths.

```
There are two primary reasons why the properties
```

possessed by Gold code sequences, and the generators which generate them, are attractive from the point of view of code division multiple access systems.

The first advantage is that a single Gold code generator is capable of generating multiple, unique Gold code sequences. This is not true of a maximal length generator, which outputs one unique sequence only. The distinction between unique code sequences and sequences which are merely phase shifted replicas of one another should be noted. It will be shown that which Gold code is generated depends only upon the initial conditions loaded into the shift registers. Thus each channel in a multiple access system need not have its own unique code generator. All that is required is to load a single code generator with the proper inital condition "keys" associated with a particular channel. A different channel only requires a different set of keys.

The second major advantage, already stated and without doubt the most important, is that the cross-correlation between members of a Gold code sequence is guaranteed to be bounded below some arbitrarily small value. For systems where large numbers of coded, high speed signals must share the same frequency band, low cross-correlation values are mandatory if the probability of false synchronization and inter-signal interference is to be reduced to an acceptable level or eliminated altogether. True maximal length sequences, which possess ideal autocorrelation properties, do not possess ideal cross-correlation properties when cross-correlated against
other maximal length sequences. To reduce unwanted cross-correlation, very long maximal length sequences must be used, and even then reducing cross-correlation below some maximum acceptable limit cannot be guaranteed.
A third possible advantage, related to the second, is that Gold code sequences can in general be much shorter than maximal length sequences and still achieve the same or lower acceptable cross-correlation value. Shorter codes implies shorter correlation time in a receiver and thus faster synch acquisition.
Finally, Gold code generators usually employ fairly simple shift register configurations with relatively few feedback taps and mod-2 addition elements (exclusive-or gates). Propagation delays through these elements limit the maximum chip rate obtainable for a given generator. This can be an especially troublesome problem in systems which require long code sequences in combination with very high data rates. The use of Gold codes in such a situation may then improve system performance by allowing shorter length codes and simpler shift register generators which can operate at the fastest speeds possible.

```
GENERATION OF GOLD CODES
```

So far properties and characteristics of maximal length sequences and Gold codes have only been qualitatively stated and examined. But to understand Gold's preferred pair selection algorithm, design a Gold code generator, and model it in software, a thorough mathematical foundation is required. To begin, single return shift register generators with mod-2 additive feedback are first characterized in terms of vectors and matrices.

Mathematical Description Of A Shift Register Generator

The inputs to each stage of an $n-s t a g e$ shift register at any point in time can be described by means of an $n \quad n$ matrix, denoted hereafter as the \bar{A} matrix. Since mod- 2 mathematical operations are always used for shift register analysis, \bar{A} matrix elements will always have values of either zero or one. Each row of the \bar{A} matrix represents the input to the corresponding shift register stage. Elements in a row represent the output of every stage, and those which have a value of one indicate that the output corresponding to that stage is either fed back to the input through the mod-2 adder network or fed forward to the stage immediately following. Figure 2, part a,

a.

$$
\overline{\mathrm{A}}=\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \underset{\sim}{\sim} \text { Inputs to Stage } \begin{gathered}
1 \\
\longleftarrow
\end{gathered}
$$

Figure 2. Derivation of the \bar{A} Matrix a) Sample Generator b) Equivalent \bar{A} Matrix

```
is a block diagram of a five-stage generator, and
Figure 2, part b, is its equivalent \vec{A}matrix. In Figure 2,
part b, the element values of the first row indicate that
output of stages two, three, four, and five are fed back
to the input of stage one. Values in the second row
indicate that the only input to stage two is the fed
forward output of stage one, and so on.
    If the contents of the shift register stages after
the k}\mp@subsup{k}{}{th}\mathrm{ shift are denoted by the n-dimensional column
vector }\overline{P}(k), then the shift register contents after the
k+1 shift, represented by }\stackrel{\rightharpoonup}{P}(k+1), is given by:
```

$\overline{\mathrm{P}}(\mathrm{k}+1)=\overline{\mathrm{A}} \cdot \overline{\mathrm{P}}(\mathrm{k})$

The output of the generator is always the $n^{\text {th }}$ element of the $\stackrel{\rightharpoonup}{\mathrm{P}}(\mathrm{k})$ vector. Initial conditions, contents of each shift register stage prior to the start of a shift cycle, can be "loaded" into the shift register by assigning values to the contents of the $\bar{P}(k)$ vector prior to the $k=0$ shift. This simple equation can be used to evaluate the state of the shift register after any series of shift cycles and so mathematically represents the shift register contents and its output sequence as a function of time.

Up to this point the single return shift register generator was characterized only in terms of its ability to generate code sequences of one type or another. A more fundamental, indeed a much more powerful approach, is to think of the shift register generators described above as mod-2 polynomial division engines. This is to say, a shift register generator is a hardware-equivalent implementation of the mathematical operation of dividing one polynomial by another using mod-2 arithmetic.

If we define the quotient as $G(x)$, then a single
return shift register generator computes

$$
G(x)=\frac{g(x)}{f(x)} \bmod 2
$$

where $g(x)$ and $f(x)$ are any two polynomials with one and zero coefficients and where the degree of $g(x)$ is at most one less than the degree of $f(x)$. This quotient, itself a polynomial, is commonly referred to as the mathematical generating function of the shift register generator [Holmes 1982] and its one and zero coefficients, taken in order of increasing powers of x, exactly corresponds to the output sequence of ones and zeros from the generator with which it corresponds.

The derivation of a completely general relationship between any linear single return shift register generator
and its mathematical generating function is a straightforward task, but is does consist of a lengthly series of steps and is not presented here. A very thorough treatment of the mathematical characterization of linear shift register generations is given by peterson [1961]. There are two pertinent conclusions that can be drawn from the results, however. The first is that the numerator polynomial of the generating function expression, $g(x)$, represents the initial condition or state of the shift register stages prior to the start of a shift cycle. The second is that the denominator polynomial, $f(x)$, is the characteristic equation of the \bar{A} matrix, which was defined above as representing the inputs to each shift register stage at any point in time.

One may recall from linear algebra theory that the characteristic equation of an $n x n$ matrix is derived by forming a new matrix of the form $|\bar{A}-x \bar{I}|$, computing its determinant, and setting it equal to zero. As an example, the characteristic equation computed from the \vec{A} matrix of Figure 2 is given by:

$$
f(x)=x^{5}+x^{4}+x^{3}+x^{2}+1
$$

The polynomial $f(x)$ above completely and uniquely characterizes, in a mathematical sense, the shift register generator shown in that figure.

```
    An important observation, particularly from a design
point of view and true in the general case, is that the
relationship of the f(x) polynomial and this generator is
demonstrated by the fact that each feedback tap of the
generator corresponds to a non-zero coefficient of the
polynomial. Thus it is a simple matter, given a
polynomial, to design an equivalent sequence generator.
It should be obvious that the use of the generating
function model and the characteristic equation enables one
to take advantage of the power and elegance of matrix
theory and polynomial algebra for the purpose of
describing and analyzing linear code sequences, selecting
those with desirable properties, and designing equipment
to generate them.
```


Properties Of Polynomials Which Generate

Maximal Length Sequences

The first theorem from polynomial algebra that is applied to the mathematical description of maximal length sequences is that if a sequence has a period p, then the characteristic polynomial corresponding to the generator which generates it, $f(x)$, will evenly divide the polynomial $1+x^{p}$, that is:

```
\(\frac{1+x^{p}}{f(x)}=0 \bmod 2\)
```


Abstract

Using this theorem, one can then define the sequence period p to be the smallest possible integer such that $f(x)$ divides $1+x^{p}$ evenly [Holmes 1982]. This is an important result from the point of view of selecting polynomials to generate maximal length sequences. Given an n-stage shift register, the maximum possible sequence length is $2^{n}-1$ Then the only polynomials which will generate sequences of this length are those which will evenly divide $1+x^{\left(2^{n}-1\right)}$. This is a necessary requirement for a polynomial to be capable of generating a maximal length sequence, but is not by itself sufficient to guarantee that it will do so.

The second property that a polynomial must possess in order to be able to generate a maximal length sequence concerns its relationship to the numerator of the generating function. Recall that the generating function $G(x)$ was defined to be:

$$
G(x)=\frac{g(x)}{f(x)}
$$

The numerator and denominator polynomials, g (x) and $f(x)$, must not have any factors in common if a maximal length sequence is to be generated. If they do, the factors will cancel, leaving two polynomials of lesser degree, which will result in shorter, non-maximal sequence lengths. To guarantee that $g(x)$ and $f(x)$ have no factors
in common, $f(x)$ must be irreducible. Irreducible in the mathematical sense implies that a polynomial of degree n cannot be evenly divided, mod-2, by another polynomial of degree less than n [Peterson 1961].

To eliminate any confusion, it is noted that labeling a polynomial as irreducible does not imply that it cannot be factored. Indeed, a fundamental theorem from polynomial algebra states that any polynomial of degree n can always be reduced to the product of n factors [Hansen 1965]. The irreducible label, in the mod-2 sense, only implies there are no factors which generate a polynomial with real-valued one and zero coefficients.

If $f(x)$ is irreducible, then the period of an output sequence is completely independent of the value of the $g(x)$ polynomial, with the exception of the trivial case when $g(x)=0$, resulting in a sequence length of one. An alternate interpretation of this is that only the feedback taps of a maximal length shift register generator represented by $f(x)$ determine which maximal length sequence is generated, a result stated earlier. Initial register conditions, represented by $g(x)$, influence neither the sequence length, nor which sequence is generated. The $g(x)$ polynomial then only determines the starting point, or phase shift, of the output sequence. As with the first requirement, the irreducible requirement is necessary to generate maximal length
sequences, but it is not by itself sufficient to guarantee that a maximal length sequence will always be generated.

Not every irreducible polynomial which divides $1+x^{p}$ will produce a maximal length sequence. There are two cases to consider.

If $2^{n}-1$ is a prime number, every irreducible polynomial of degree n will generate a maximal length sequence. If $2^{n}-1$ is not a prime number, then the irreducible polynomial must be primitive if it is to generate a maximal length sequence. From algebraic field theory, an irreducible polynomial of degree n is primitive if and only if it divides $x^{m}-1$ for no m less than 2^{n} - 1 [Peterson 1961].

In summary, polynomials selected to generate maximal
length code sequences must possess three mathematical properties. Given a polynomial of degree n, it must be irreducible, it must be primitive, and it must evenly divide $1+x^{p}$ where $p=2^{n}-1$.

Tables of irreducible polynomials for each value of n over the field of two elements, zero and one (called the Galois field by mathematicians), are presented by several authors. Notable among these is Peterson's Table of Irreducible Polynomials [Peterson 1961]. These tables list all irreducible polynomials for degrees $n=1$ to $n=16$. Those irreducible polynomials which are also primitive are indicated as such. The first entry for each order is the
primitive polynomial with the minimum number of non-zero coefficients. Also tabulated with each polynomial are relationships between the roots of the polynomials relative to the roots of the first primitive polynomial. Specifically, if the first polynomial has some root, β^{1}, the other polynomials of the same degree which have roots of B raised to some power are indicated. This information is required for Gold's preferred polynomial pair algorithm presented next.

The technique of generating a maximal length code sequence reduces then to selecting the desired code length L, computing n from $L=2^{n}-1$, and choosing a primitive, irreducible polynomial from a table such as Peterson's. The feedback taps of the required generator are connected to correspond to the non-zero coefficients of the polynomial, and the design is complete.

Gold's Preferred Polynomial Pair Algorithm

To generate Gold code sequences of length $2^{n}-1$, two primitive irreducible polynomials from Peterson's table are first selected, and an equivalent maximal length code sequence generator corresponding to each polynomial is designed. Then the third linear addition property of maximal length sequences is applied by taking the output sequence of each generator and mod-2 adding them. The resulting sequences will be Gold code sequences if the two
polynomials chosen conform to Gold's preferred pair requirements.

Working in the late 1960 s and early 1970 s , Gold was able to define a relationship between pairs of primitive, irreducible polynomials which guaranteed that the family of composite code sequences generated with the pair would always display bounded cross-correlation values when correlated among all members of family [Gold 1967]. Further work by him proved that both auto and cross-correlation functions of members of the family are always three-valued [Gold 1968]. Further, the maximum normalized cross-correlation bounding value can be made arbitrarily small by using longer code sequence lengths.

Gold's relationship defining such a preferred pair of
polynomials can be stated as follows. Let $p_{1}(x)$ be a primitive polynomial of degree n such that n is not divisible by 4. Let β be a root of $p_{1}(x)$, that is, $p_{1}(B)=0$. Let $p_{2}(x)$ be a second primitive polynomial, of the same degree, n, with a root B^{t} such that:

$$
\begin{aligned}
t= & \text { for } n \text { odd } \\
& \text { and } \\
\left.t=2^{(n-1) / 2}+2\right) / 2+1 & \text { for } n \text { even, not }=0 \bmod 4
\end{aligned}
$$

Then $p_{1}(x)$ and $p_{2}(x)$ form a preferred pair of polynomials. The n even, not $=0 \bmod 4$ requirement is to ensure that t is
prime relative to $2^{n}-1$, which in turn guarantees that $p_{1}(x)$ and $p_{2}(x)$ are prime relative to one another.

Given a preferred pair of polynomials $p_{1}(x)$ and $p_{2}(x)$
whose corresponding shift register generators generate maximal length sequences of period $2^{n}-1$, then a shift register corresponding to the product polynomial
$p_{1}(x) p_{2}(x)$ will generate $2^{n}+1$ different sequences each of length $2^{n}-1$ and such that the cross-correlation $R(k)$ between any sequence pair satisfies the inequality:

$$
\begin{aligned}
& R(k) \leq 2^{(n+1) / 2}+1 \text { for } n \text { odd } \\
& \text { and } \\
& R(k) \leq 2^{(n+2) / 2}+1 \text { for } n \text { even, not }=0 \bmod 4
\end{aligned}
$$

The $2^{n}+1$ distinct codes so generated are Gold code sequences. Gold has shown [Holmes 1982] that if two polynomials $p_{1}(x)$ and $p_{2}(x)$ are relatively prime, then any sequence that can be generated by the shift register corresponding to the product polynomial $p_{1}(x) p_{2}(x)$ is exactly equivalent to the sum of sequences generated by shift registers corresponding to $p_{1}(x)$ and $p_{2}(x)$.

Designing a Gold code generator using two shorter
polynomials $p_{1}(x)$ and $p_{2}(x)$ of order n instead of a single $2 n$-ordered polynomial corresponding to $p_{1}(x) p_{2}(x)$ is advantageous for a number of reasons. One reason is that implementation of lower order polynomials requires fewer

Abstract

feedback taps and mod-2 addition elements, allowing faster code rates. Another reason is that it is much easier with this configuration to compute and define initial shift register conditions for each Gold code sequence which will generate the greatest number of balanced Gold codes, a topic to be dealt with next.

The Characteristic Phase Of A Maximal Length Sequence

So far the mathematical analysis of maximal length sequences has been almost exclusively concerned with the denominator polynomial of the generating function, $f(x)$. To generate sets of Gold codes, one more piece of theoretical information which concerns the numerator polynomial, $g(x)$, is needed. From earlier remarks, it was noted that specifying $g(x)$ is equivalent to loading initial conditions into the shift register stages prior to the start of a shift cycle, and that although $g(x)$ influences neither the length nor the composition of the output sequence, it does determine which phase shifted replica of the sequence is output. Given a dual shift register Gold code generator, the set of initial conditions loaded into both shift registers determines which of the $2^{n}+1$ possible Gold code sequences is output.

As noted previously, a maximal length sequence generator will output only one unique sequence which is

```
2n
load conditions, any one of 2 n - 1 phase shifted replicas
of this sequence may be generated. There is one special
phase shifted version of every maximal length sequence,
however, referred to as the characteristic phase sequence.
The characteristic phase sequence has the remarkable
property that if every other chip in the sequence is
sampled, beginning with the first chip, then the resulting
sequence is identical to the sampled sequence
[Ho1mes 1982].
    Gold has shown [Gold 1966] that the formula for the
numerator polynomial g(x) which results in the
characteristic phase for a maximal length sequence is
given by:
g(x)=\frac{d[xf(x)]}{dx}
g ( x ) = f ( x ) + \frac { d [ x f ( x ) ] } { d x } \text { for n even}
In the equations above, addition is mod-2, and the
expression
d[xf(x)]
    d x
represented by \(f(x)\) [Gold 1966]. Evaluation of this expression proceeds by first multipling every term of f(x) by \(x\). Next, the derivative of each term of the resulting polynomial is evaluated in the normal manner. Finally, the coefficients of each term which are even-valued are set equal to zero, and those which are odd-valued are set equal to one. As an example, let:
\[
\begin{aligned}
f(x) & =x^{6}+x^{5}+x^{2}+x+1 \\
x f(x) & =x^{7}+x^{6}+x^{3}+x^{2}+x \\
\frac{d[x f(x)]}{d x} & =1 x^{6}+0 x^{5}+1 x^{2}+0 x+1 \\
& =x^{6}+x^{2}+1
\end{aligned}
\]

These formulas for \(g(x)\) will be used in the next section in a procedure to define initial condition "keys" for each Gold code sequence output from the generator.

\section*{DESIGN OF A GOLD CODE GENERATOR}

The Gold code sequence generator designed in this paper uses two sixth-order irreducible, primitive polynomials. Sixth-order polynomials were chosen for two reasons.

The first reason is that even-ordered polynomials will generate sets of Gold code sequences which, when cross-correlated against other members of the set, yield the lowest correlation value more often than do sets generated from odd-ordered polynomials. From Gold's 3 -valued cross-correlation analysis, codes generated from even-ordered polynomials, when cross-correlated with shifted versions of other members of the set, will yield the smallest possible normalized correlation value ( \(-1 /\) sequence length) about \(75 \%\) of the time. Codes generated from odd-ordered polynomials will exhibit this lowest attainable cross-correlation value about \(50 \%\) of the time [Holmes 1982]. For this reason, Gold codes generated from even-ordered polynomials are the better choice from a systems point of view, since their use further reduces the already low probability of false synchronization and interference between coded signals sharing the same frequency band.

The second reason that sixth-order polynomials were chosen is that the next lowest even order, \(n=4\), and the next largest even order, \(n=8\), are both divisible by 4 . Polynomial orders divisible by 4 are not allowed in order to ensure that the polynomials chosen are relatively prime, as required by Gold's preferred pair algorithm. The next useable even order is \(n=10\). The computational difficulties encountered when working with maximal length sequences that are \(2^{10}-1=1023\) chips long ruled out this and larger values of \(n\) for the analysis which will follow.

\section*{Selection of the Preferred Pair}

For degree \(n=6\), Peterson's Table of Irreducible Polynomials lists the following three primitive polynomials:
\[
\begin{aligned}
& f_{1}(x)=x^{6}+x+1 \\
& f_{2}(x)=x^{6}+x^{5}+x^{2}+x+1 \\
& f_{3}(x)=x^{6}+x^{5}+x^{3}+x^{2}+1
\end{aligned}
\]

In addition, the reciprocals of the above polynomials are also primitive and irreducible. The reciprocal of an \(n^{t h}\) order polynomial is defined to be [ziemer 1985]:
\[
f^{-1}(x)=x^{n} f(1 / x)
\]

Using this definition, the three reciprocal polynomials are:
\[
\begin{aligned}
& f_{4}(x)=x^{6}+x^{5}+1 \\
& f_{5}(x)=x^{6}+x^{5}+x^{4}+x+1 \\
& f_{6}(x)=x^{6}+x^{4}+x^{3}+x+1
\end{aligned}
\]

It is noted that computing the inverse of a polynomial is equivalent to reversing the order of the output sequence of its generator. The same procedure described in an earlier section to reverse the output sequence of a shift register sequence can be applied to quickly compute the inverse of a polynomial. The original sequence, and the same sequence but in reverse order, are nevertheless two unique code sequences, so the inverse polynomials are valid candidates for the preferred pair algorithm.

For convenience and clarity, Gold's theorem for selecting preferred pairs of polynomials is repeated. Given one primitive, irreducible polynomial of order n which has a root, \(B\), the second polynomial of the pair will have a root, \(B^{t}\), where:
\[
\begin{gathered}
t=2^{(n-1) / 2}+1 \text { for } n \text { odd } \\
\text { and }
\end{gathered}
\]
\[
t=2^{(n-2) / 2}+1 \quad \text { for } n \text { even, } \operatorname{not}=0 \bmod 4
\]

Thus, for \(n=6, t=2^{(6-2) / 2}+1=5\). That is, the second polynomial must have a root, \(\beta^{5}\). From Peterson's tables it is found that such a preferred pair, chosen from the set of six polynomials above, is:
\[
\begin{aligned}
p_{1}(x)= & x^{6}+x+1 \\
& \text { and } \\
p_{2}(x)= & x^{6}+x^{5}+x^{2}+x+1
\end{aligned}
\]

\section*{Implementation - Design of the Generator}

Each member of the preferred pair, being a primitive, irreducible polynomial, can generate a maximal length PN code sequence when implemented with a single return shift register employing mod-2 additive feedback. The Gold code generator employs two of these shift register
configurations, one to implement \(p_{1}(x)\), the other to implement \(p_{2}(x)\). Since each polynomial is sixth-order, each shift register consists of six stages. Feedback taps are connected to the output of those stages which correspond to non-zero coefficents in the respective polynomials. The feedback tap values from each stage are added mod-2 and routed to the input of the first stage of the respective generator. The output of each generator, (i.e., the output of stage 6 from each generator) is also connected to a single mod-2 adder. Thus, as a maximal length code sequence chip is generated and shifted out of
one generator, it is added, mod-2, to a corresponding chip from the other maximal length sequence. In other words, the maximal length sequence generated by the \(p_{1}(x)\) polynomial is added to the sequence generated by the \(p_{2}(x)\) polynomial as each is shifted out of its respective generator. The resultant sequence is a Gold code sequence, and the combination of the dual maximal length sequence generators with the mod-2 adder at the output comprises the Gold code generator. The block diagram of the Gold code generator using the \(p_{1}(x)\) and \(p_{2}(x)\) polynomials is shown in Figure 3 .

Representation of the Generator with a Mathematical Model
For computational convenience, it is desirable to derive a mathematical model of the Gold code generator using code vectors and matrices. The primitive polynomials used to generate the Gold code sequences, \(p_{1}(x)\) and \(p_{2}(x)\), are in fact characteristic equations of two unique matrices, \(\bar{A}_{p_{1}}\) and \(\overline{\mathrm{A}}_{2}\), which can be said to describe the state of the inputs to each stage of each shift register at any point in time. If the contents of the shift registers after some arbitrary shift, \(k\), are designated by the column vectors \(\bar{P}_{1}(k)\) and \(\bar{P}_{2}(k)\), the contents of the


Figure 3.
shift registers after the \(k+1\) shift can be expressed by \(\overline{\mathrm{P}}_{1}(\mathrm{k}+1)\) and \(\overline{\mathrm{P}}_{2}(\mathrm{k}+1)\) as follows:
\[
\begin{aligned}
& \overline{\mathrm{P}}_{1}(k+1)= \overline{\mathrm{A}}_{1} \cdot \overline{\mathrm{P}}_{1}(k) \\
& \text { and } \\
& \overline{\mathrm{P}}_{2}(k+1)=\overline{\mathrm{A}}_{2} \cdot \overline{\mathrm{P}}_{2}(k)
\end{aligned}
\]

The matrix corresponding to the characteristic equation
\[
\begin{array}{r}
\mathrm{p}_{1}(\mathrm{x})=\mathrm{x}^{6}+\mathrm{x}+1 \text { is given by: } \\
{\underset{\mathrm{Ap}}{1}}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
\end{array}
\]

The matrix corresponding to the characteristic equation
\[
\begin{gathered}
p_{2}(x)=x^{6}+x^{5}+x^{2}+x+1 \text { is given by : } \\
{\bar{A} p_{2}}=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
\end{gathered}
\]

The contents of the \(\stackrel{\rightharpoonup}{P}_{1}(x)\) shift register, after the \(k+1\) shift, is then:
\[
\left[\begin{array}{lll}
P & (k+1) \\
P_{1} & 1 & (k+1) \\
P_{1} & 2 & (k+1) \\
P_{1} & 3 & (k+1) \\
P_{1} & 4 & (k+1) \\
P_{1} & 1 & (k+1)
\end{array}\right]=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
P_{1} & 1 & (k) \\
P_{1} & 1 & (k) \\
P & 2 & (k) \\
P_{1} & 3 & (k) \\
P & 1 & 4(k) \\
P_{1} & 5 & (k) \\
1 & 6
\end{array}\right] \quad \text { Eq. MM1 }
\]
\[
\begin{aligned}
& P_{11}(k+1)=P_{11}(k)+P_{16}(k) \\
& P_{12}(k+1)=P_{11}(k) \\
& P_{13}(k+1)=P_{12}(k) \\
& P_{14}(k+1)=P_{13}(k) \\
& P_{15}(k+1)=P_{15}(k), \\
& P_{16}(k+1)=
\end{aligned}
\]
where " + " implies mod-2 addition.
The contents of the \(\vec{P}_{2}(x)\) shift register, after the \(k+1\) shift, is given by:
\[
\begin{aligned}
& {\left[\begin{array}{ll}
\mathrm{P}_{2} & (\mathrm{lk}+1) \\
\mathrm{P}_{2} & (\mathrm{k}+1) \\
2 & (\mathrm{k}+1)
\end{array}\right]=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \quad . \quad\left[\begin{array}{lll}
\mathrm{P}_{2} & 1 & (\mathrm{k}) \\
\mathrm{P}_{2} & (\mathrm{k}) \\
\mathrm{P}_{2} & 2 & (\mathrm{k}) \\
\mathrm{P}_{2} & 3 & (\mathrm{k}) \\
\mathrm{P}_{2} & 4 & (\mathrm{k}) \\
\mathrm{P}_{2} & 5 & (\mathrm{k})
\end{array}\right]} \\
& \text { or } \\
& \mathrm{P}_{21}(\mathrm{k}+1)=\mathrm{P}_{21}(\mathrm{k})+\mathrm{P}_{22}(\mathrm{k})+\mathrm{P}_{25}(\mathrm{k})+\mathrm{P}_{26}(\mathrm{k}) \\
& P 22(k+1)=P 21(k) \\
& \mathrm{P}^{23}(\mathrm{k}+1)=\mathrm{P} 22^{(k)} \\
& \mathrm{P}_{24}^{24(k+1)}=\mathrm{P}_{2} 3(\mathrm{k}) \\
& \mathrm{P}_{26}^{25}(\mathrm{k}+1)=\mathrm{P}_{25}(\mathrm{k})
\end{aligned}
\]

Eq. MM2

Again, " + " implies mod-2 addition.
The Gold code sequence vector is then simply expressed as:
\[
\begin{aligned}
\overline{\mathrm{GC}}= & {\left[\mathrm{GC}_{0}, \mathrm{GC}_{2}, \ldots \mathrm{GC}_{\mathrm{L}-1}\right] } \\
= & {\left[\mathrm{P}_{16}(0)+\mathrm{p}_{26}(0), \mathrm{p}_{16}(1)+\mathrm{p}_{26}(1), \ldots \mathrm{p}_{16}(\mathrm{~L}-1)+\right.} \\
& \left.\mathrm{p}_{26}(\mathrm{~L}-1)\right]
\end{aligned}
\]

Eq. MM 3
where \(L\) is the sequence length, \(2^{6}-1=63\), and where " + " implies mod-2 addition, as always.

In summary, equations MM1, MM2, and MM3 are the elements which comprise the mathematical model of the Gold code generator.

Designation of Initial Conditions Keys

A Gold code generator implemented with polynomials of order \(n\) will generate a set of \(2^{n}+1\) Gold code sequences. This set of sequences includes the maximal length sequence of each generating polynomial, in its characteristic phase, plus the \(2^{n}-1\) sequences, each of length \(2^{n}-1\), which result as one maximal length sequence is phase shifted from its characteristic phase and added to the non-shifted characteristic phase of the other, chip by chip. Hence \(\left(2^{n}-1\right)\) codes plus ( \(1+1\) ) codes yields a ( \(2^{n}+1\) ) code set. The Gold code generator designed above with sixth-order polynomials can thus generate \(2^{6}+1=65\) Gold code sequences.

Which Gold code sequence is generated from the set of 65 depends upon which phase shifted maximal length sequence is generated by one of the generators, given that the other generator is generating its non-shifted maximal length characteristic phase sequence. Furthermore, the initial conditions loaded into the shift register stages prior to the start of a shift cycle (shift k=0) determine
which phase shifted sequence is generated. In other words, selection of the initial shift register conditions determines which Gold code sequence is generated. Hence, for each Gold code in the set, a set of keys must be designated, that is, the initial conditions which must by loaded into each shift register to generate that particular Gold code sequence.

Calculation of Characteristic Phase Sequences
Clearly, to be able to assign sets of initial
condition keys and to begin generating Gold codes, one must first determine the characteristic phases of the maximal length sequences generated by each polynomial, \(p_{1}(x)\) and \(p_{2}(x)\). This is achieved by using the output sequence generating function.

Recall that the generating function for a maximal
length sequence, \(G(x)\), can be expressed as the ratio of two polynomials, as follows:
\[
G(x)=\frac{g(x)}{f(x)}
\]

Here, \(f(x)\) is a primitive, irreducible polynomial. Recall also that Gold has shown that the characteristic phase of a maximal length sequence is generated if the
numerator of the generating function, \(g(x)\), is of the form
\[
\begin{array}{ll}
g(x)=\frac{d[x f(x)]}{d x} & \text { for } n \text { odd } \\
g(x)=f(x)+\frac{d[x f(x)]}{d x} \quad \text { for } n \text { even }
\end{array}
\]

The initial register conditions required to generate the characteristic phase sequence of the \(p_{1}(x)\) polynomial generator are calculated as follows:
\[
\begin{aligned}
g_{1}(x) & =p_{1}(x)+\frac{d\left[x p_{1}(x)\right]}{d x} \\
& =x^{6}+x+1+\frac{d\left[x\left(x^{6}+x+1\right)\right]}{d x} \\
& =x^{6}+x+1+x^{6}+1 \\
& =x
\end{aligned}
\]

In other words, \(G_{1}(x)\) is the characteristic phase sequence from the \(p_{1}(x)\) polynomial generator if \(g_{1}(x)=x\). Proceeding:
\[
\begin{aligned}
G_{1}(x) & =\frac{g_{1}(x)}{p_{1}(x)}=\frac{x}{x^{6}+x+1} \\
& =x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots
\end{aligned}
\]

To generate the characteristic phase sequence with the \(p_{1}(x)\) polynomial generator, then, the following initial conditions must be loaded into the shift register prior to the start of a shift cycle:
\[
\begin{aligned}
& \text { Stage } 6=0 \\
& \text { Stage } 5=1 \\
& \text { Stage } 4=1 \\
& \text { Stage } 3=1 \\
& \text { Stage } 2=1 \\
& \text { Stage }=1
\end{aligned}
\]

In a like manner, the initial conditions required to generate the characteristic phase with the \(p_{2}(x)\) generator are computed:
\[
\begin{aligned}
g_{2}(x) & =p_{2}(x)+\frac{d\left[x p_{2}(x)\right]}{d x} \\
& =x^{6}+x^{5}+x^{2}+x+1+\frac{d\left[x\left(x^{6}+x^{5}+x^{2}+x+1\right)\right]}{d x} \\
& =x^{6}+x^{5}+x^{2}+x+1+x^{6}+x^{2}+1 \\
& =x^{5}+x \\
G_{2}(x) & =\frac{g_{2}(x)}{p_{2}(x)}=\frac{x^{5}+x^{5}+x^{2}+x+1}{x+x^{2}} \\
& =x+x^{2}+x^{4}+x^{8}+x^{13}+\ldots
\end{aligned}
\]

From this result, it is concluded that to generate the characteristic phase sequence with the \(p_{2}(x)\) polynomial generator, the following initial
conditions must be loaded into the shift register prior to the start of a shift cycle:
\[
\begin{aligned}
& \text { Stage } 6=0 \\
& \text { Stage } 5=1 \\
& \text { Stage } 4=1 \\
& \text { Stage } 3=0 \\
& \text { Stage } 2=1 \\
& \text { Stage }=0
\end{aligned}
\]

Table 1 briefly summarizes these results.

Generation of the Gold Code Family
Having solved for the two characteristic phase
sequences, the first two Gold code sequences in the set have then also been determined. To generate each of the remaining \(63\left(2^{n}-1\right)\) members, one of the polynomial generators is forced to output only its characteristic phase sequence, and the other generator is loaded with a set of initial conditions which causes it to output one of its \(63\left(2^{n}-1\right)\) possible phase shifted sequences (relative to its characteristic phase). The chip by chip sum of the non-shifted and shifted phase sequences results in the output of the corresponding Gold code sequences.

The choice of which generator to output its
characteristic phase and which generator to output a phase shifted version of its characteristic phase is not altogether arbitrary. To generate a Gold code family with the greatest number of balanced sequences, the \(p_{2}(x)\) generator must be the one which repeatedly generates its

TABLE 1
CHARACTERISTIC PHASE SEQUENCE OF EACH SHIFT REGISTER GENERATOR
\begin{tabular}{|c|c|c|}
\hline GENERATOR & INITIAL LOAD & MAXIMAL LENGTH \\
(PONDITION & CHARACTERISTIC PHASE \\
(S6.....S1) & SEQUENCE (IN HEX) \\
\hline \(\mathrm{P}_{1}(\mathrm{x})\) & 0 & 1 \\
\(\mathrm{p}_{2}(\mathrm{x})\) & 0 & 1 \\
\hline
\end{tabular}
non-shifted characteristic phase while the \(p_{1}(x)\) generator is keyed to generate phase shifted replicas of its
characteristic phase sequence. Table 2 lists all Gold code sequences output from the Gold code generator designed and modeled above. Included with each sequence is its unique set of keys, that is, the initial conditions which must be loaded into the shift registers to generate that particular sequence.

Data for this table was generated by two Basic
language programs which implement the previously derived mathematical model for the Gold code generator described above. The programs run on a Radio Shack Model 4 Personal Computer with two floppy disk drives and the TRS-DOS Version 6.0 operating system.

The first program, "POLYSEQ," or "polynomial sequence generator," is designed to generate the characteristic phase sequence, and all its \(2^{n}-2\) phase shifted replicas, for any primitive, irreducible polynomial, given as input the polynomial order, the polynomial coefficients, and initial shift register contents. Pages 73 through 76 of the Appendix contain the source code listing of the "POLYSEQ" program. Pages 77 and 78 list the maximal length sequence, and all its phase shifted replicas, which is output from the program when given input for the \(p_{1}\) ( \(x\) ) polynomial. Pages 79 and 80 list the output for the \(p_{2}(x)\) polynomial. The first sequence in each list is the
characteristic phase sequence. The "POLYSEQ" program can also store each set of maximal length sequences onto floppy disk for use by the second program, "GOLDGEN."
The "GoLDGEN," or "Gold code generation" program, takes the characteristic phase sequence from one of the two sets of sequences stored by the "POLYSEQ" program and mod-2 adds it, chip by chip, to each phase-shifted sequence of the other sequence set stored by "POLYSEQ," therefore generating each Gold code sequence. Pages 81 through 85 of the Appendix contain the source code listing of the "GOLDGEN" program. Pages 86 through 99 contain the output from this program, which used the \(p_{1}\) ( \(x\) ) sequence set as the shifting sequence and the characteristic phase sequence from the \(p_{2}(x)\) sequence set as the non-shifted sequence. This output listing shows both generating maximal length polynomial sequences and the resulting Gold code sequence for each Gold code in the family.

TABLE 2

SET OF GOLD CODE SEQUENCES AND THEIR INITIAL CONDITION KEYS
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { GOLD } \\
& \text { CODE }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{P}_{1}(\mathrm{x}) \mathrm{KEY} \\
& (\mathrm{~S} 6 \ldots \mathrm{~S} 1)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{P}_{2}(\mathrm{x}) \mathrm{KEY} \\
& (\mathrm{~S} 6 \ldots \mathrm{~S} 1)
\end{aligned}
\] & \[
\begin{gathered}
\text { GOLD CODE } \\
\text { SEQUENCE (HEX) }
\end{gathered}
\] & BALANCED UNBALANCED \\
\hline 1 & 011111 & 000000 & 3F566ED271794610 & B \\
\hline 2 & 000000 & 011010 & 3442 CA 93 C 1 B 98 EBF & B \\
\hline 3 & 011111 & 011010 & 0B14A441B0COC8AF & U \\
\hline 4 & 111111 & 011010 & 4AEE1737234B029F & B \\
\hline 5 & 111110 & 011010 & \(491 \mathrm{~B} 71 \mathrm{DA045C96FE}\) & B \\
\hline 6 & 111101 & 011010 & 4 EF 1 BCO 04 A 73 BE 3 C & B \\
\hline 7 & 111010 & 011010 & 412417 B4D62DEFB 8 & B \\
\hline 8 & 110101 & 011010 & 5E8F1ODDEE914CBO & B \\
\hline 9 & 101010 & 011010 & 61 D 97 E 0 F 9 FE 80 AAO & B \\
\hline 10 & 010101 & 011010 & 1 F 75 A 3 AB 7 D 1 A 8680 & B \\
\hline 11 & 101011 & 011010 & 622 C 18 E 2 B 8 FF 9 EC 1 & B \\
\hline 12 & 010110 & 011010 & 189 F 6 E 713335 AE 42 & B \\
\hline 13 & 101100 & 011010 & 6DF9835624A1CF45 & B \\
\hline 14 & 011001 & 011010 & 073459180 B 890 D 4 A & U \\
\hline 15 & 110011 & 011010 & 52 AFED8455D88955 & B \\
\hline 16 & 100110 & 011010 & 799884 BCE 97 B 816 A & B \\
\hline 17 & 001101 & 011010 & 2FF655CD903D9114 & B \\
\hline 18 & 011011 & 011010 & 032BF22F62B1B1E9 & B \\
\hline 19 & 110111 & 011010 & 5 A90BBEA87A9F013 & B \\
\hline 20 & 101110 & 011010 & 69E628614D9973E6 & B \\
\hline 21 & 011101 & 011010 & OF0BOF76D9F8740C & B \\
\hline 22 & 111011 & 011010 & 42 D 14159 F 13 A 7 BD 9 & B \\
\hline 23 & 110110 & 011010 & 5965 DDO 7 A 0 BE 6472 & B \\
\hline 24 & 101101 & 011010 & 6E0CE5BB03B65B24 & B \\
\hline 25 & 011010 & 011010 & OODE94C245A62588 & U \\
\hline 26 & 110100 & 011010 & 5D7A7630C986D8D1 & B \\
\hline 27 & 101001 & 011010 & 6633 B 3 D 51 C 72262 & B \\
\hline 28 & 010010 & 011010 & 10 AO 381 FE 144 D 704 & U \\
\hline 29 & 100100 & 011010 & \(7 \mathrm{D} 872 \mathrm{~F} 8 \mathrm{B80433DC9}\) & B \\
\hline 30 & 001001 & 011010 & 27 C 900 A 3424 CE 852 & U \\
\hline 31 & 010011 & 011010 & 13555 EF 2 C 6534365 & B \\
\hline 32 & 100111 & 011010 & 7 A 6 DE 251 CE 6 C 150 B & B \\
\hline 33 & 001110 & 011010 & 281C9B17DE12B9D6 & B \\
\hline
\end{tabular}

TABLE 2 CONTINUED
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { GOLD } \\
& \text { CODE }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{P}_{1}(\mathrm{X}) \mathrm{KEY} \\
& (\mathrm{~S} 6 \ldots \mathrm{~S} 1)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{P}_{2}(\mathrm{x}) \mathrm{KEY} \\
& (\mathrm{~S} 6 \ldots \mathrm{~S} 1)
\end{aligned}
\] & \[
\begin{gathered}
\text { GOLD CODE } \\
\text { SEQUENCE (HEX) }
\end{gathered}
\] & BALANCED UNBALANCED \\
\hline 34 & 011100 & 011010 & OCFE699BFEEFEO6D & U \\
\hline 35 & 111000 & 011010 & 453 B 8 C 83 BF 15531 B & B \\
\hline 36 & 110001 & 011010 & 56B046B33CE035F6 & B \\
\hline 37 & 100010 & 011010 & 71 A7D2D23B0AF82C & B \\
\hline 38 & 000101 & 011010 & 3F88FA1034DF6398 & B \\
\hline 39 & 001011 & 011010 & 23 D 6 AB 942 B 7454 Fl & B \\
\hline 40 & 010111 & 011010 & \(1 \mathrm{B6A089C14223A23}\) & U \\
\hline 41 & 101111 & 011010 & 6A134E8C6A8EE787 & B \\
\hline 42 & 011110 & 011010 & O8E1C2AC97D75CCE & B \\
\hline 43 & 111100 & 011010 & 4D04DAED6D642A5D & B \\
\hline 44 & 111001 & 011010 & 46CEEA6E9802C77A & B \\
\hline 45 & 110010 & 011010 & 515A8B6972CF1D34 & B \\
\hline 46 & 100101 & 011010 & 7 E 724966 A 754 A 9 A 8 & B \\
\hline 47 & 001010 & 011010 & \(2023 C D 790 C 63 C 090\) & U \\
\hline 48 & 010100 & 011010 & \(1 \mathrm{C} 80 \mathrm{C} 5465 \mathrm{AOD12E1}\) & U \\
\hline 49 & 101000 & 011010 & 65C6D538F6DOB603 & B \\
\hline 50 & 010001 & 011010 & 174 AF5C5AF6BFFC6 & U \\
\hline 51 & 100011 & 011010 & \(7252 \mathrm{B4} 3 \mathrm{~F} 1 \mathrm{C} 1 \mathrm{D} 6 \mathrm{C} 4 \mathrm{D}\) & B \\
\hline 52 & 000110 & 011010 & 386237 CA 7 AFO 4 B 5 A & B \\
\hline 53 & 001100 & 011010 & 2 CO 33020 B 72 A 0575 & U \\
\hline 54 & 011000 & 011010 & 04C13FF52C9E992B & B \\
\hline 55 & 110000 & 011010 & 5545205 E 1 BF 7 Al 197 & B \\
\hline 56 & 100001 & 011010 & 764 D 1 F 087525 DOEE & B \\
\hline 57 & 000010 & 011010 & 305 D 61 A 4 A 881321 C & U \\
\hline 58 & 000100 & 011010 & 3C7D9CFD13C8F7F9 & U \\
\hline 59 & 001000 & 011010 & 243 C 664 E 655 B 7 C 33 & B \\
\hline 60 & 010000 & 011010 & 14 BF 9328887 C 6 BA 7 & B \\
\hline 61 & 100000 & 011010 & 75 B 879 E 5232448 F & B \\
\hline 62 & 000001 & 011010 & 37 B 7 AC 7 EE 6 AE 1 ADE & U \\
\hline 63 & 000011 & 011010 & 33A807498F96A67D & B \\
\hline 64 & 000111 & 011010 & 3B9751275DE7DF3B & U \\
\hline 65 & 001111 & 011010 & 2BE9FDFAF9052DB7 & U \\
\hline
\end{tabular}

\section*{PERFORMANCE EVALUATION AND ANALYSIS}
```

Given the set of Gold code sequences output from the computer model of the generator designed in the previous section, properties that they do or do not possess are now examined.
One must recall that Gold code sequences are not maximal length sequences. The relationship stating the equivalence of single and dual single return shift registers was expressed earlier, and is repeated here for convenience. Given two polynomials $p_{1}(x)$ and $p_{2}(x)$ that are prime relative to one another, then any sequence generated by the mod-2 sum of $p_{1}(x)$ and $p_{2}(x)$ will exactiy equal the sequence generated by the product of $p_{1}(x)$ and $p_{2}(x)$. The preferred pair of polynomials selected using Gold's criteria are by definition relatively prime. Hence the set of Gold codes derived from the dual shift register implementation of two sixth-order polynomials can also be generated by a single shift register generator representing a twelfth-order polynomial which is the product of the two sixth-order equations.

```

Given \(p_{1}(x)\) and \(p_{2}(x)\) from the previous section, the twelfth-order product polynomial is:
\[
\begin{aligned}
r(x) & =p_{1}(x) \cdot p_{2}(x) \\
& =\left(x^{6}+x+1\right) \cdot\left(x^{6}+x^{5}+x^{2}+x+1\right) \\
& =x^{12}+x^{11}+x^{8}+x^{6}+x^{5}+x^{3}+1
\end{aligned}
\]

The equivalent generator is shown in Figure 4. The point to be noted here is that the Gold code sequences generated by the dual register generator represent the output of a single generator implementation of a twelfth-order polynomial. For the output sequences of a twelfth-order generator to be maximal length, they must have a repetition period of \(2^{12}-1=4095\) chips. Clearly, the Gold code sequences, with repetition periods of 63 chips, are not maximal length.

The next obvious question is that if Gold codes are not maximal length sequences, do they still satisfy the randomness postulates and qualify as pseudo-random noise codes? It turns out that all members of a Gold code family do not strictly satisfy the three randomness postulates to the same degree that maximal length sequences do, but there is always a subset of the family whose members come close enough to doing so to be useful nevertheless.


Figure 4. Equivalent single shift register implementation of the Gold code generator, \(r(x)=x^{12}+x^{11}+x^{8}+x^{6}+x^{5}+x^{3}+1\).

\section*{Run-Length Distribution Analysis}

Consider first the run-length distribution of ones
and zeros. Table 3 lists run-length distribution data for the first ten Gold code sequences output by the computer model of the generator. The first two entries do indeed verify Freymodsson's run-length distribution result for maximal length sequences because these two codes are in fact true maximal length sequences. Although several of the remaining eight codes have run-length distributions that closely approximate the ideal distribution exhibited by Codes 1 and 2 , most do not. Code 9, for instance, has a run of eight consecutive ones embedded within it, and code 6 has a run of eleven consecutive zeros. Run lengths of this size are undesirable, particularly for shorter length sequences, since correlation and false synchronization errors are more likely to occur. In practice, this undesirable characteristic can be made less of a problem by using codes with longer sequence lengths.

Identification of Balanced Members of the Family
In addition to listing all Gold code sequences output
from the generator along with their initial condition keys, Table 2 also indicates which sequences are balanced and which are not. Forty-nine of the 65 sequences exhibit the balanced property and 16 do not. Because of the

TABLE 3

RUN-LENGTH DISTRIBUTIONS OF THE FIRST TEN GOLD CODES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { GOLD } \\
& \text { CODE }
\end{aligned}
\] & \multicolumn{8}{|l|}{NUMBER OF RUNS OF ONES OF LENGTH} & \multicolumn{5}{|r|}{NUMBER ZEROS} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { OF } \\
& \text { OF }
\end{aligned}
\]} & \multicolumn{3}{|l|}{\begin{tabular}{l}
RUNS OF \\
LENGTH
\end{tabular}} & \\
\hline NUMBER & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline 1 * & 8 & 4 & 2 & 1 & 0 & 1 & 0 & 0 & 8 & 4 & 2 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 * & 8 & 4 & 2 & 1 & 0 & 1 & 0 & 0 & 8 & 4 & 2 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 10 & 5 & 0 & 1 & 0 & 0 & 0 & 0 & 6 & 3 & 4 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 8 & 3 & 4 & 0 & 0 & 1 & 0 & 0 & 8 & 5 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline 5 & 8 & 4 & 3 & 0 & 0 & 0 & 1 & 0 & 8 & 4 & 3 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline 6 & 4 & 1 & 3 & 3 & 1 & 0 & 0 & 0 & 4 & 5 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 7 & 8 & 4 & 1 & 2 & 1 & 0 & 0 & 0 & 8 & 4 & 2 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 8 & 8 & 3 & 2 & 3 & 0 & 0 & 0 & 0 & 8 & 3 & 3 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 9 & 6 & 2 & 1 & 0 & 1 & 1 & 0 & 1 & 6 & 2 & 0 & 1 & 2 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 10 & 8 & 4 & 2 & 0 & 2 & 0 & 0 & 0 & 12 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline
\end{tabular}
* Codes 1 and 2 are true maximal length sequences and exhibit the ideal run-length distribution for a sequence length of 63 chips.
importance of using balanced code sequences for the reasons cited earlier, these sixteen unbalanced codes would not be used in a practical application.

Close examination of the data in Table 2 reveals that unbalanced codes are only generated in cases where both initial condition keys have the same value (either both zero or both one in the general case, but both zero in this particular case) in the position corresponding to stage 6. This is equivalent to stating that unbalanced codes are only generated when the two generating maximal length sequences both begin with zero or both begin with one. The converse is not true, however. Balanced codes may be generated by any combination of the initial values of the generating sequence. However, if the initial values are different, balanced codes will always result.

Gold has shown that this is true in the general case [Gold 1976 ]. Balanced members of a Gold code family will be guaranteed if the initial condition keys are selected as follows. The generator corresponding to the preferred pair polynomial with the \(B^{t}\) root, the \(p_{2}(x)\) polynomial for the generator designed in this paper, is "keyed" to generate its characteristic phase sequence. If the characteristic phase sequence of the \(B^{t}\) sequence begins with a zero, then any phase shifted version of the characteristic phase of the other polynomial, the \(B\) sequence, which begins with a one will always generate a balanced Gold code. Likewise,
if the \(\beta^{t}\) sequence begins with a one, the \(B\) sequence must begin with a zero to ensure balance. Initial condition keys for the generator designed in this paper were chosen according to this rule, and the results tabulated in Table 2 confirm Gold's result.

Being able to predict whether a Gold code will be balanced or not simply by examination of the initial condition keys is very useful when selecting codes from a very large family of very long sequences, which will be the case in most practical applications. It is also important to realize that not all code sequences available from a Gold code generator are always suitable for use. If balanced codes are required, then out of \(2^{n}+1\) code sequences available, only about half are guaranteed to be balanced (a few more may be), a factor which must be considered before the code length that a system will employ is decided upon.

\section*{Correlation Analysis}

The work by Gold has shown that the cross-correlation function evaluated between any two members of a Gold code family is always three-valued. Moreover, the autocorrelation function of every family will always evaluate to one of the same three values, with the addition of one occurrence of one other value, that for a shift of \(k=0\) representing perfect correlation.

\begin{abstract}
Gold's theory predicts each value, which is dependent solely on the register length, \(n\), of the maximal length sequence generators. Table 4 summarizes the predicted unnormalized autocorrelation and normalized cross-correlation values for any member of a Gold code sequence family.
\end{abstract}

From Gold's predicted values, the autocorrelation value representing perfect correlation will be \(2^{6}-1=63\), for \(n=6\), while the remaining three values will always be either \(-1,-(2(6+2) / 2+1)=-17\), or \(\left(2^{(6+2) / 2-1)}=15\right.\).

Using the same values, the normalized cross-correlation function will always evaluate to one of the three values, \(-1 / 63,-17 / 63\), or \(15 / 63\). Hence, for a sixth-order Gold code generator, the cross-correlation between any two code sequences output from it will always have a value no greater than \(17 / 63=0.2698\), or about \(27 \%\) of the maximum.

At this point it is worth demonstrating the performance gain which may be realized by increasing the Gold code sequence length and the tradeoffs that must be considered when doing so. Table 5 summarizes sequence lengths and maximum normalized cross-correlation values for every possible Gold code family from degree 5 to degree 21. As expected, increasing sequence length decreases maximum cross-correlation bounding value.

TABLE 4
PREDICTED CORRELATION VALUES FOR GOLD CODE FAMILY MEMBERS WITH SEQUENCE LENGTH \(L=2^{\text {n }}-1\)
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
REGISTER \\
LENGTH \(n\)
\end{tabular} & UNNORMALIZED AUTOCORRELATION & NORMALIZED CROSS-CORRELATION \\
\hline \(n\) ODD & \[
\begin{gathered}
\mathrm{L} \\
-1 \\
-\left(2^{(n+1) / 2}+1\right) \\
\left(2^{(n+1) / 2}-1\right)
\end{gathered}
\] & \[
\begin{gathered}
-1 / L \\
-\left(2^{(n+1) / 2}+1\right) / L \\
\left(2^{(n+1) / 2}-1\right) / L
\end{gathered}
\] \\
\hline \begin{tabular}{l}
n EVEN AND \\
NOT \(=\) OMOD4
\end{tabular} & \[
\begin{gathered}
-1 \\
-\left(2^{(n+2) / 2}+1\right) \\
\left.{ }_{(2}^{(n+2) / 2}-1\right)
\end{gathered}
\] & \[
\begin{gathered}
-1 / L \\
-\left(2^{(n+2) / 2}+1\right) / L \\
\left(2^{(n+2) / 2}-1\right) / L
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{TABLE 5}

MAXIMUM NORMALIZED CROSS-CORRELATION VALUES FOR GOLD CODE SEQUENCE DEGREES FROM 5 TO 21
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
\hline \text { DEGREE } \\
\mathrm{N} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { SEQUENCE } \\
\text { LENGTH } \\
\hline
\end{gathered}
\] & MAXIMUM NORMALIZED CROSS-CORRELATION \\
\hline 5 & 31 & \(9 / 31=.2903\) \\
\hline 6 & 63 & \(17 / 63=.2698\) \\
\hline 7 & 127 & 17/127=.1339 \\
\hline 9 & 511 & \(33 / 511=.0646\) \\
\hline 10 & 1023 & \(65 / 1023=.0635\) \\
\hline 11 & 2047 & \(65 / 2047=.0318\) \\
\hline 13 & 8191 & \(129 / 8191=.0157\) \\
\hline 14 & 16383 & \(257 / 16383=.0157\) \\
\hline 15 & 32767 & \(257 / 32767=.0078\) \\
\hline 17 & 131071 & \(513 / 131071=.0039\) \\
\hline 18 & 262143 & \(1025 / 262143=.0039\) \\
\hline 19 & 524287 & 1025/524287=.0020 \\
\hline 21 & 2097151 & 2049/2097151 = .0010 \\
\hline
\end{tabular}
```

A maximum value below 10% is guaranteed for Gold code
sequences with degree greater than 7, and values less than
1% are guaranteed for sequences with degree greater than
14.

```

The data in Table 5 further reveals, that if maximum correlation values are the sole selection criteria when choosing a Gold code sequence length, then there is no advantage in choosing a sequence length of 1023 over 511 , as an example, since both sequences will have about the same maximum correlation value. Indeed, using one sequence length twice as long as another when both achieve the same cross-correlation values will only needlessly double the synch acquisition time in the receiver. On the other hand, using a sequence length of 1023 instead of 511 will at least double the number of useable Gold code sequences available. The point to note here is that code length selection has a great impact on many system parameters and is no exception to the rule that as in any engineering application, tradeoffs must be made based upon individual system requirements.

\section*{Correlation Analysis Program Description}

Three Basic language programs were developed for the purpose of calculating and studying the auto and cross-correlation properties of both maximal length and Gold code sequences. Although these three programs were
```

specifically designed to analyze data from the Gold code
generator designed in this paper, they are general purpose
and can be used to analyze the correlation properties of
any set of code sequences. The only practical constraint
is on the code sequence length. Longer sequences require
more internal memory in the computer. Hence, the maximum
code sequence length which can be accommodated by the
three programs is limited only by the available memory in
the computer on which they are used.
The first program, "AUTOCOR," or "autocorrelation
calculation" program, was designed to compute
autocorrelation values for all the maximal length and Gold
code sequences generated. The program operates on data in
disk files stored by programs such as "POLYSEQ" and
"GOLDGEN" and outputs, in list form, the autocorrelation
values for every possible phase shift of the input
sequence. Pages 100 and 101 of the Appendix contain the
source code listing of the "AUTOCOR" program. Sample
output from this program is also included in the Appendix.
Pages 102 and 103 show the autocorrelation calculation
results for the maximal length sequence output from the
pi(x) sequence generator. Page 104 is a plot of this data.
It is seen that the autocorrelation function for this
sequence is two valued, as predicted by theory, and
demonstrates the ideal autocorrelation property of a
maximal length PN code sequence. Pages 105 and 106 show

```

\begin{abstract}
the autocorrelation calculation results for the Gold code 43 sequence. Page 107 is a plot of this data. Again, the results confirm those predicted by theory.

The second program, "CROSSCOR," or "cross-correlation
\end{abstract} calculation" program, was designed to compute
cross-correlation values for all maximal length and Gold code sequences generated. Like the "AUTOCOR" program, this one also operates on data in disk files stored by programs such as "POLYSEQ" and "GOLDGEN" and outputs, in list form, the cross-correlation values for every possible phase of one code sequence relative to another. Pages 108 through 110 of the Appendix contain the source code listing of the "CROSSCOR" program. Sample output from the program is also included in the Appendix. Pages 111 and 112 show the cross-correlation calculation results when Gold code 57 is correlated against Gold Code 13. Page 113 is a plot of these results. This data confirms the expected results that the cross-correlation function between members of a Gold code family is always three-valued. Further, the three values obtained are those predicted by theory.

The third and final Program, "CORRSUM," or
"correlation analysis summary" program, is designed to compute and summarize auto and cross-correlation calculation results computed across some subset of a set of code sequences generated by programs such as "POLYSEQ" or "GOLDGEN." This program also operates on data stored in

\begin{abstract}
disk files, and outputs a tabulation of correlation values and the frequency of occurrence of each. Pages 114 through 117 of the Appendix list the source code listing of the "CORRSUM" program. Pages 118 through 126 contain a sample of the output from this program. This sample output tabulates the results of a complete auto and cross-correlation analysis between a subset of the Gold code family bounded between Gold codes 17 and 21. In addition to confirming earlier results, the tabulated data shows that the minimum unnormalized cross-correlation value, -1 , does occur about \(75 \%\) of the time, a result predicted by Gold to occur if maximal length sequence generators designed from even-ordered polynomials are used to generate the Gold code sequence family.
\end{abstract}

\section*{SUMMARY}

This paper on the design of a Gold code generator and the study of Gold code properties is concluded by briefly summarizing the important points noted in the previous pages.

Of the many advantages obtained using spread spectrum techniques, one of the most important is that they are very much suited to applications where multiple message signals must share the same frequency band at the same time, or where it is necessary to selectively address remote receivers or transmitters quickly and easily. Since code sequences are used to directly control the modulation processes, code division multiplexing techniques are especially well suited for use with spread spectrum systems, especially those of the direct sequence type.

To enable multiple signals to share the same frequency band at the same time without interfering with one another, the pseudo-random code sequences used must possess certain characteristics, chief among which is that the signals generated with them must not cross-correlate to any appreciable degree. A family of linear, pseudo-random noise codes which possess near ideal properties for code division multiple access applications are the so-called Gold code sequences.

Working in the late 1960 s and early 1970 s at the Magnavox Research Labs, Robert Gold defined an algorthm for selecting two maximal length pseudo-random noise code sequences which, when mod-2 added, yield a family of composite sequences with some very interesting properties. The property of most importance is that the cross-correlation value between any two members of the family is always bounded by some maximum value and is dependent solely on the sequence length. Further, this maximum bounding value can be made arbitrarily small by simply increasing the sequence length. Hence this composite set of sequences, the Gold code family, is well suited for use in code division multiple access systems. Another advantage afforded by the use of Gold codes is that a single generator designed to generate Gold code sequences can actually generate the entire family of unique codes simply by loading different initial condition "keying" sequences into the shift registers of the generator prior to the start of a shift cycle. When used in conjunction with a direct sequence spread system configuration with a single carrier frequency, for example, no retuning is required to switch channels. All that is required is to key in a different set of shift register load values to generate the code sequence designated for the new channel. In such a configuration, it is possible for a transmitter to selectively address a
remote receiver which has been keyed to receive data in one channel only. Likewise different initial condition codes can be keyed into a receiver to pick out signals from different transmitters, again without retuning. Other desirable characteristics are that Gold codes can in general be much shorter codes, allowing faster synch acquisition times. Also, Gold code generators are in general simple and can so operate at very high speed.

The procedure used to design the sixth-order Gold code generator in this paper is perfectly general, and can be used to design any Gold code generator of any valid sequence length. In addition, the procedures outiined to select polynomials with the required mathematical properties, to configure the feedback taps of single return shift register generators, and compute the characteristic phase of maximal length sequences can be used to construct maximal length pseudo-random noise code generators for systems which do not require the unique advantages afforded by Gold codes but which do require high performance pseudo-random code generators. The software programs developed for this paper are general purpose design and analytic tools which are suited to a wide range of system analysis and design tasks. Finally, since code type, code selection, and code length affect so many communication system performance parameters, it is hoped that the results presented in this paper can be used
to aid the systems designer faced as always with the inevitable performance tradeoffs which must be made. Gold codes are employed in a number of modern spread spectrum communications systems. One example is the Tracking and Data Relay Satellite System (TDRSS). In this direct sequence spread spectrum system, a long maximal length code sequence is used in conjunction with 1023 chip Gold code sequences which are used to provide initial synch acquisition. Another system is the Global Positioning Satellite System (GPSS). In this system, 1023 chip Gold code sequences are again used for synch acquisition in conjunction with a very long non-1inear pseudo-random noise code. In one typical receiver configuration, signals from up to four different satellites are synchronized at the same time. Each signal can be differentiated because each is coded with a different Gold code sequence. This system takes full advantage of all the Gold code properties mentioned earlier; low cross-correlation between signals in the same band, selective addressing capability, fast synch acquisition made possible by short sequence lengths, and very high code rates.
Future systems to which Gold codes will be well suited are the new Direct Broadcast satellite System (DBSS), as well as various new mobile communication and cellular radio applications. In each case, the properties
```

of low cross-correlation, selective addressing, fast synch
acquisition and high-speed performance afforded by the use
of Gold codes should enable system designers to
successfully implement systems with the utmost performance
and reliability.

```

\section*{APPENDIX}
```

This Appendix contains computer program material which was developed for use in the design, modeling, and analysis of the Gold code generator and its component parts. Included here are Basic language program source code listings and sample output from the following five programs:
"POLYSEQ" (Polynomial Sequence Generator Program),
"GOLDGEN" (Gold Code Generator Program),
"AUTOCOR" (Autocorrelation Calculation Program),
"CROSSCOR" (Cross-Correlation Calculation Program),
"CORRSUM" (Correlation Analysis Summary Program).

```
PROGRAM "POLYSEQ"
MAXIMAL LENGTH POLYNOMIAL SEQUENCE GENERATOR
THIS PROGRAM IS DESIGNED TO COMPUTE THE CHARACTERISTIC SEQUENCE, AND
ALL ITS PHASE-SHIFTED REPLICAS, FOR A PRIMITIVE, IRREDUCIBLE
POLYNOMIAL, GIVEN AS INPUT THE POLYNOMIAL ORDER, THE COEFFICIENTS
OF THE POLYNOMIAL ( 1 'S OR \(\square\) 'S), AND THE INITIAL SHIFT REGISTER
CONTENTS.
BASED UPON THESE INPUTS, THE PROGRAM GENERATES THE MATRIX OF THE
SINGLE RETURN SHIFT REGISTER MODEL CORRESPONDING TO THE INPUT
POLYNOMIAL COEFFICIENTS AND USES IT TO COMPUTE ALL POSSIBLE
PHASE-SHIFTED SEQUENCES, RELATIVE TO THE SEQUENCE CORRESPONDING
TO THE INITIAL SHIFT REGISTER CONTENTS SPECIFED.
\[
\begin{aligned}
& \text { NT } \\
& \text { NT" } \\
& \text { NT } \\
& \text { INP }
\end{aligned}
\]
DIMENSION THE ARRAYS.
PARAMETERS FROM OPERATOR.
POLYNOMIAL ---"; PORDER
POLYOUT (SLENGTH), POLYCO(PORDER), MATRIX(PORDER, PORDER)
STAGE (SLENGTH), STAGE1 (SLENGTH), PBUFFER\$(SLENGTH)




340 INPUT"ENTER POLYNOMIAL COEFFICIENTS (C1, C2, ... CN)";COSTRING\$ FOR I = 1 TO PORDER

1190 REM THE FOLLOWING SEGMENT PRINTS THE CONTENTS OF PBUFFER\$ TO THE PRINTER.
PRINT"INPUT PAGE HEADER":INPUT HEADER\$
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{1210 PRINT"INPUT PAGE HEADER":INPUT HEADER\$} \\
\hline \multicolumn{2}{|l|}{1220 LPRINT:LPRINT HEADER\$:LPRINT} \\
\hline \multicolumn{2}{|l|}{1230 FOR M = 1 TO MSEQ} \\
\hline 1240 & LPRINT" SHIFT";M-1; = \({ }^{\prime}\); PBUFFER\$(M) \\
\hline 1250 & NEXT M \\
\hline 1260 & RETURN \\
\hline 1270 & REM \\
\hline 1280 & REM THE FOLLOWING SEGMENT PROMPTS THE OPERATOR FOR A FILE NAME AND THEN \\
\hline 1290 & REM WRITES THE CONTENTS OF THE PBUFFER\$ ARRAY ONTO DISK. \\
\hline 1300 & REM \\
\hline 1310 & PRINT \\
\hline 1320 & INPUT" ENTER A FILE NAME"; CODEFILE\$ \\
\hline 1330 & REM \\
\hline 1340 & OPEN "D",1,CODEFILE\$, SLENGTH \\
\hline 1350 & REM \\
\hline 1360 & FIELD 1, SLENGTH AS CODEBUFFER\$ \\
\hline 1370 & REM \\
\hline \multicolumn{2}{|l|}{1380 FOR I = 1 TO MSEQ} \\
\hline 1390 & LSET CODEBUFFER\$ = PBUFFER\$ ( I ) \\
\hline 1400 & PUT 1 \\
\hline 1410 & NEXT I \\
\hline 1420 & CLOSE \\
\hline 1430 & RETURN \\
\hline
\end{tabular}












\author{
トトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトト
}


\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}
| || || || || || || || |1 || || || || || || || || |1 || || || || || || ||






















\section*{001}


 ｜｜｜｜｜1｜｜｜｜｜｜｜1｜｜｜｜｜｜ ローNMホーゥN
トトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトト



|| || \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \|









M
NEXT
REM
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
INPUT
IF C
IF C
STOP
REM


PRINTER
THE

エ


Wヨ W W
NOW WRITE THE REMAINING GOLD CODES INTO THE FILE
FOR M \(=1\) TO MSEQ
LSET CODEBUFFER \(=\) GOLDBUFF \(\$(M)\)
PUT 1
NEXT M
CLOSE
RETURN


\begin{tabular}{|c|c|}
\hline GOLD CODE & \(=1\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=2\) \\
\hline SHIFT SEQ & = \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=3\) \\
\hline SHIFT SEQ & = \(01111110101011001101110110100100111001^{\text {a }}\) \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=4\) \\
\hline SHIFT SEQ & = 111111010101100110111011010010011100010111100101000110000100000 \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline
\end{tabular}


\(0 \exists S \quad \perp\lrcorner I H S-O N\)
\(0 \exists 5 \quad \perp I H S\)
\(\exists 00 J 0705\)
\(\exists J N \exists \cap 0 \exists S\) a709
SHIFT SEQ
SEQ

\section*{CODE}

GOLD
GOLD CODE
SHIFT SEQ

NO-SHIFT

\(=7\)


1
\(\infty\)


 \(=9\)
= 1010101100110111011010

110
GOLD SEQUENCE
GOLD CODE
SHIFT SEQ
SHIFT SEQ
NO-SHIFT SEQ

\section*{GOLD CODE}
NO-SHIFT SEQ
GOLD SEQUENCE

\begin{abstract}
GOLD CODE
SHIFT SEQ
NO-SHIFT S
\end{abstract}
GOLD SEQUENCE
\begin{tabular}{|c|c|}
\hline GOLD CODE & \(=10\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ & \(=0110100010 \times 01011001010100100111100001101110011000111010111111\) \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=11\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=12\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ & \(=01101000100001011001010100100111100001101110011000111010111111\) \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=13\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=14\) \\
\hline SHIFT SEQ & = 01100110111011010010011100010111100101000110000100000111110101 \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE & \(=\) [ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline GOLD CODE & \(=15\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=16\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=17\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE & \(=01011111111011001010110110011011001000001111011001000100010100\) \\
\hline GOLD CODE & \(=18\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE & \(=\) Q \\
\hline GOLD CODE & \(=19\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline GOLD CODE & \(=20\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=21\) \\
\hline SHIFT SEQ & = \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=22\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=23\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=24\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline GOLD CODE & \(=25\) \\
\hline SHIFT SEQ & = \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE & \(=\) a \\
\hline GOLD CODE & \(=26\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=27\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=28\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE & \(=\) [ \\
\hline GOLD CODE & \(=29\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline GOLD CODE & \(=30\) \\
\hline SHIFT SEQ & = \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=31\) \\
\hline SHIFT SEQ & = \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=32\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=33\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=34\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline GOLD CODE & \(=35\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=36\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=37\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE & = 111000110100111110100101101001000111011000010101111100000101100 \\
\hline GOLD CODE & \(=38\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=39\) \\
\hline SHIFT SEQ & \(=801011110010100011000010000011111101010110011011101101001001110\) \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline GOLD CODE & \(=40\) \\
\hline SHIFT SEQ & = \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=41\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=42\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=43\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=44\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline
\end{tabular}
GOLD CODE
SHIFT SEQ
SH
NO-SHIFT SEQ
S
\begin{tabular}{|c|c|}
\hline GOLD CODE & \(=50\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=51\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=52\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=53\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline GOLD CODE & \(=54\) \\
\hline SHIFT SEQ &  \\
\hline NO-SHIFT SEQ &  \\
\hline GOLD SEQUENCE &  \\
\hline
\end{tabular}

\(=61\)



\footnotetext{

}





 GOLD SEQUENCE SHIFT SEQ
NO-SHIFT SEQ

\section*{GOLD CODE}
SHIFT SEQ

GOLD SEQUENCE
GOLD CODE
SHIFT SEQ
NO-SHIFT SEQ
GOLD SEQUENCE

\section*{63}
\begin{tabular}{|c|}
\hline 63 \\
\hline
\end{tabular}

1 \(=\) Q 0111111010101100110111011010010011100010111100101000110000100 II
GOLD CODE
SHIFT SEQ
GOLD CODE
SHIFT SEQ
NO-SHIFT SEQ
GOLD SEQUENCE

FIELD 1 ,SLENGTH AS P2SEQUENCE \(\$\)


SEQUENCE
011111101010110011011101101001001110001011110010100011000010000
\[
\text { AUTOCORRELATION }=63
\]
 AUTOCORRELATION
AUTOCORRELATION AUTOCORRELATION AUTOCORRELATION
AUTOCORRELATION
 AUTOCORRELATION



 AUTOCORRELATION AUTOCORRELATOR AON AUTOCORRELATION AUTOCORRELATION
 AUTOCORRELATION

 ｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜



 || || || || || \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \|



AUTOCORRELATION PLOT - MAXIMAL LENGTH SEQUENCE FROM THE P1(X) GENERATOR








 | || || |1 || || || || || || || || || | || || || || || || || || || || || || ||



PRTFLAG=0


FOR \(K=1\) TO NSHIFT
AGREE＝0：DISAGREE \(=0\)
SLENGTH
740

吴品只只品足员员只品品品品只品品品品只品品品号
CROSS-CORRELATION CALCULATION BETWEEN GOLD CODES 13 AND 57






 || || || || || || || || || || || || || || || || || || || || || || || || || || || || ||



\[
\text { CROSS-CORRELATION PLOT - GOLD CODE } 13 \text { AGAINST GOLD CODE } 57
\]






BEGIN BY READING IN THE REQUIRED SEQUENCES FROM THE DISK.

\section*{"D",1,SHSEQ\$,SLENGTH}
OPEN

 FOR K = 1 TO SLENGTH
\begin{tabular}{|c|c|}
\hline 700 &  \\
\hline 720 & DISAGREE \(=\) DISAGREE +1 \\
\hline 730 & NEXT I \\
\hline 740 & REM \\
\hline 750 & VALUE \(=\) AGREE-DISAGREE \\
\hline 760 & REM \\
\hline 770 & REM CHECK FOR A NEW CORRELATION VALUE TO ADD TO THE TABLE \\
\hline 780 & REM \\
\hline 790 & FOR I = 1 TO VALNUM \\
\hline 800 & IF VALARRAY \((1)=\operatorname{VALUE} \operatorname{THEN~ARVAL}(\mathrm{I})=\operatorname{ARVAL}(\mathrm{I})+1: G 0 T 0980\) \\
\hline 810 & NEXT I \\
\hline 820 & REM \\
\hline 830 & REM If HERE, we have a new value, 50 Add it to the table \\
\hline 840 & REM \\
\hline 850 & VALNUM \(=\) VALNUM +1 \\
\hline 860 & VALARRAY (VALNUM) = VALUE \\
\hline 870 & ARVAL (VALNUM) \(=1\) \\
\hline 880 & GOTO 980 \\
\hline 890 & REM \\
\hline 900 & IF PRTFLAG=1 THEN GOTO 930 \\
\hline 910 & PRINT"SHIFT"; \({ }^{\text {- }}\); " \(=\) ", "CROSS CORRELATION \(=\) ", AGREE-DISAGREE \\
\hline 920 & GOTO 960 \\
\hline 930 & REM \\
\hline 940 & LPRINT" SHIFT \(=\) "; -1, "CROSS CORRELATION \(=\) ";AGREE-DISAGREE \\
\hline 950 & REM \\
\hline 960 & REM NOW SHIFT THE CORRELATION SEQUENCE FOR THE NEXT PASS \\
\hline 970 & REM \\
\hline 980 & AUTOSAVE\$ \(=\) MID\$(AUTOCORR\$ \(, 1,1)\) \\
\hline
\end{tabular}




GOLDCODE \(\quad 17=010111111110110010101101100110110010000001111011001000100010100\)
GOLDCODE \(20=110100111100110001010000110000101001101100110010111001111100110\)
FREQUENCY
OF OCCURENCE
43
8
12

\footnotetext{
010111111110110010101101100110110010000001111011001000100010100

" ॥
\(\underset{N}{\sim}\)
岩

}
CROSS

\section*{CORRELATION}
JALUE
-1
-17
15
R

GOLDCODE \(18=000001100101011111100100010111101100010101100011011000111101001\)
GOLDCODE \(18=000001100101011111100100010111101100010101100011011000111101001\)

GOLDCODE
GOLDCODE
\(21=\)
2

\section*{CORRELATION}
CROSS


FREQUENCY
OF OCCURENCE
1
38
12
12

\footnotetext{


\[
\begin{aligned}
& \text { FREQUENCY } \\
& \text { OF OCCURENCE }
\end{aligned}
\]
\(19=\)
\(20=\)

\section*{CROSS CORRELATION \\ value}
\(-1\)
51
51
4
8
}
 CORRELATION
VALUE AUTO

\footnotetext{
101101010010001011101111101010100011110101001111100000010011
 FREQUENCY
OF OCCURENCE
51
8
4
}
\(\begin{array}{ll}\text { GOLDCODE } & 20=11010011110011000101000110000101001101100110010111001111100110 \\ \text { GOLDCODE } & 17=01011111111011001010110110011011001000001111011001000100010100\end{array}\) FREQUENCY
OF OCCURENCE

CORRELATION
VALUE
CROSS
GOLDCODE


GOLDCODE \(20=110100111100110001010000110000101001101100110010111001111100110\)
GOLDCODE \(20=110100111100110001010000110000101001101100110010111001111100110\)
\begin{tabular}{lc} 
AUTO CORRELATION & FREQUENCY \\
VALUE & OF OCCURENCE \\
& \\
63 & 1 \\
-1 & 46 \\
-17 & 8 \\
15 & 8
\end{tabular}




GOLDCODE \(\quad 21=000111100001011000011110111011011011001111110000111010000001100\)
GOLDCODE \(17=010111111110110010101101100110110010000001111011001000100010100\)

GOLDCODE \(21=00011110000101100001110111011011011001111110000111010000001100\)
GOLDCODE \(18=000001100101011111100100010111101100010101100011011000111101001\)
\begin{tabular}{lc} 
CORRELATION & FREQUENCY \\
VALUE & OF OCCURENCE \\
& \\
-1 & 51 \\
15 & 8 \\
-17 & 4
\end{tabular}



\[
\begin{gathered}
\text { FREQUENCY } \\
\text { OF OCCURENCE } \\
1 \\
16 \\
30 \\
16
\end{gathered}
\]

Dixon, Robert C. 1984. Spread spectrum systems. New York: John Wiley \& Sons, Inc.

Gold, Robert. 1966 . Characteristic linear sequences and their coset functions. SIAM Journal on Applied Mathematics, 14:980-985.

Gold, Robert. 1967. Optimal binary sequences for spread spectrum multiplexing. IEEE Transcripts on Information Theory, IT-13:619-621.

Gold, Robert. 1968. Maximal recursive sequences with 3-valued cross-correlation functions. IEEE Transcripts on Information Theory, IT-14:154-156.

Gold, Robert., Dixon, Robert C., and Kaiser, Fred. 1976. TDRSS Telecommunications Systems PN Code Analysis. NASA Contract NAS \(5-22546\) Final Report.

Hansen, John C. 1965. Modern algebra for coding. Electro-Technology, 76:57-66.

Holmes, Jack K. 1982. Coherent spread spectrum systems. New York: John Wiley \& Sons, Inc.

Peterson, Wesley W. 1961 . Error-correcting codes. Cambridge: The M.I.T. Press.

Shanmugam, K. Sam. 1979. Digital and analog communication systems. New York: John Wiley \& Sons, Inc.

Stremler, G. Ferrel. 1982. Introduction to communications systems. Reading: Addison-Wesley Publishing Company.

Tausworthe, Robert C. 1965. Random numbers generated by linear recurrence modulo two. Mathematical Computation, 19:201-209.

Ziemer, R.E. and Tranter, W.H. 1976 . Principles of communication. Boston: Houghton Mifflin Company.

Ziemer, R.E. and Peterson, R.L. 1985. Digital communications and spread spectrum systems. New York: MacMillan Publishing Company.```

