43,444 research outputs found
Drag coefficients for partially inflated flat circular parachutes
Free-body tests of flat circular parachutes and determination of aerodynamic drag coefficients during partial inflatio
Stability of large horizontal-axis axisymmetric wind turbines
The stability of large horizontal axis, axi-symmetric, power producing wind turbines was examined. The analytical model used included the dynamic coupling of the rotor, tower and power generating system. The aerodynamic loading was derived from blade element theory. Each rotor blade was permitted tow principal elastic bending degrees of freedom, one degree of freedom in torsion and controlled pitch as a rigid body. The rotor hub was mounted in a rigid nacelle which may yaw freely or in a controlled manner. The tower can bend in two principal directions and may twist. Also, the rotor speed can vary and may induce perturbation reactions within the power generating equipment. Stability was determined by the eigenvalues of a set of linearized constant coefficient differential equations. All results presented are based on a 3 bladed, 300 ft. diameter, 2.5 megawatt wind turbine. Some of the parameters varied were; wind speed, rotor speed structural stiffness and damping, the effective stiffness and damping of the power generating system and the principal bending directions of the rotor blades. Unstable or weakly stable behavior can be caused by aerodynamic forces due to motion of the rotor blades and tower in the plane of rotation or by mechanical coupling between the rotor system and the tower
Signatures of non-gaussianity in the isocurvature modes of primordial black hole dark matter
Primordial black holes (PBHs) are black holes which may have formed very
early on during the radiation dominated era in the early universe. We present
here a method by which the large scale perturbations in the density of
primordial black holes may be used to place tight constraints on
non-gaussianity if PBHs account for dark matter (DM). The presence of
local-type non-gaussianity is known to have a significant effect on the
abundance of primordial black holes, and modal coupling from the observed CMB
scale modes can significantly alter the number density of PBHs that form within
different regions of the universe, which appear as DM isocurvature modes. Using
the recent \emph{Planck} constraints on isocurvature perturbations, we show
that PBHs are excluded as DM candidates for even very small local-type
non-gaussianity, and remarkably the constraint on
is almost as strong. Even small non-gaussianity is excluded if DM is
composed of PBHs. If local non-Gaussianity is ever detected on CMB scales, the
constraints on the fraction of the universe collapsing into PBHs (which are
massive enough to have not yet evaporated) will become much tighter.Comment: 23 pages, 11 figures. V2: minor corrections and changes, matches
published versio
Late-Time Convection in the Collapse of a 23 Solar Mass Star
The results of a 3-dimensional SNSPH simulation of the core collapse of a 23
solar mass star are presented. This simulation did not launch an explosion
until over 600ms after collapse, allowing an ideal opportunity to study the
evolution and structure of the convection below the accretion shock to late
times. This late-time convection allows us to study several of the recent
claims in the literature about the role of convection: is it dominated by an
l=1 mode driven by vortical-acoustic (or other) instability, does it produce
strong neutron star kicks, and, finally, is it the key to a new explosion
mechanism? The convective region buffets the neutron star, imparting a 150-200
km/s kick. Because the l=1 mode does not dominate the convection, the neutron
star does not achieve large (>450 km/s) velocities. Finally, the neutron star
in this simulation moves, but does not develop strong oscillations, the energy
source for a recently proposed supernova engine. We discuss the implications
these results have on supernovae, hypernovae (and gamma-ray bursts), and
stellar-massed black holes.Comment: 31 pages (including 13 figures), submitted to Ap
Calculating the mass fraction of primordial black holes
We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation c in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not - this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, Δ, should be used instead as super-horizon modes are damped by a factor k2. We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes
Lattice dynamics of anharmonic solids from first principles
An accurate and easily extendable method to deal with lattice dynamics of
solids is offered. It is based on first-principles molecular dynamics
simulations and provides a consistent way to extract the best possible harmonic
- or higher order - potential energy surface at finite temperatures. It is
designed to work even for strongly anharmonic systems where the traditional
quasiharmonic approximation fails. The accuracy and convergence of the method
are controlled in a straightforward way. Excellent agreement of the calculated
phonon dispersion relations at finite temperature with experimental results for
bcc Li and bcc Zr is demonstrated
Open and Closed Loop Stability of Hingeless Rotor Helicopter Air and Ground Resonance
The air and ground resonance instabilities of hingeless rotor helicopters are examined on a relatively broad parametric basis including the effects of blade tuning, virtual hinge locations, and blade hysteresis damping, as well as size and scale effects in the gross weight range from 5,000 to 48,000 pounds. A special case of a 72,000 pound helicopter air resonance instability is also included. The study shows that nominal to moderate and readily achieved levels of blade inertial hysteresis damping in conjunction with a variety of tuning and/or feedback conditions are highly effective in dealing with these instabilities. Tip weights and reductions in pre-coning angles are also shown to be effective means for improving the air resonance instability
- …