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Dept. of Mechanical & Aerospace Engineering
University of Delaware

Newark, Delaware 19711, U.S.A.

ABSTRACT

This paper examines the stability of large horizontal axis, axi-symmetric,

power producing wind turbines. The analytical model used includes the dynamic
coupling of the rotor, tower and power generating system. The aerodynamic

loading is derived from blade element theory. Each rotor blade is permitted

two principal elastic bending degrees of freedom, one degree of freedom in

torsion and controlled pitch as a rigid body. The rotor hub is mounted in a

rigid nacelle which may yaw freely or in a controlled manner. The tower can

bend in two principal directions and may twist. Also, the rotor speed can vary

and may induce perturbation reactions within the power generating equipment.

Stability is determined by the eigenvalues of a set of linearized constant coef-

ficient differential equations. All results presented are based on a 3-bladed,

300 ft.-diameter, 2.0 megawatt wind turbine. Some of the parameters varied are;

wind speed, rotor speed structural stiffness anddamping, the effective stiff-

ness and damping of the power generating system and the principal bending

directions of the rotor blades. The results show that unstable or weakly

stable behavior can be caused by aerodynamic forces due to motion of the rotor

blades and tower in the plane of rotation or by mechanical coupling between the
rotor system and the tower.

1. INTRODUCTION

The economic analysis of wind energy convertors (W.E.C.'s) has shown that

large horizontal axis wind turbines can compete with fossil fuel and nuclear

power plants D-_" They would have rotors about 100-300 ft. in diameter, and

would produce from 1 to i0 megawatts of power. They would operate over a wide

range of wind speeds, and vary in function from high speed low torque electrical

generating plants to low speed high torque pumping stations. However, the eco-

nomic viability and steady performance of a wind turbine are only meaningful if
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the corresponding dynamic performance is acceptable. The wind turbine must be

dynamically stable over its entire operating range. Steady fatigue loads must

remain below established limits. Transient response to unsteady winds and

changes in load must not cause structural overloading.

Many of the factors which can effect these criteria are known from the

study of helicopter rotors and aircraft propellers _-i0_. Some of these are
the ratios of the rotor blade bending and torsional natural frequencies to

rotor rotation rate, kinematic coupling between bending and torsional deflec-

tions, the equilibrium blade deformations under load, blade twist, and the

orientation of the principal bending axes with the plane of rotor rotation.

The relationships among these parameters are sufficiently complex that a given

change in any one of them can be either stabilizing or destabilizing depending

on the values of the other parameters. The basic trends are, however, that any
velocity or deformation perturbation which tends to increase the blade lift

force or induce blade motion in the plane of the rotor degrades the dynamic

performance of the rotor. On the other hand, perturbations which reduce the

lift or couple with heavily damped blade flapping motion tend to enhance the

dynamic characteristics of the rotor.

Wind turbines, however, differ sufficiently from flight vehicles so that

an accurate description of their dynamic behavior cannot be deduced from flight

vehicle analyses. The most significant structural differences result from the

size and orientation of the wind turbine rotor _. As wind turbines increase
in size their mass tends to increase in a cubical fashion, while reference areas

tend to increase in a quadratic fashion. If the ratio of the rotor tip speed to

the wind speed (tip speed ratio) is held constant, then aerodynamic similarity

will be maintained, and the stresses created in the tower and rotor by aerody-

namic and centrifugal forces will also remain the same. Similarly, the ratios
of the natural frequencies of vibration to steady rotor rotation rate are also

unchanged. However, the stresses produced by gravity increase proportionately

with size _. Sample calculations show that for large rotors, the magnitude

of the in-plane gravitational moment of the blade root is significantly larger

than the steady turning moment _ .

One trend toward solving structural rotor problems is with stiff rotor

blades. The in-plane and flapping natural frequency ratios considered are

typically from 2.5 to 5 D3,14_. This compares with a range of about 0.5 to

2.5 for aircraft rotors and propellers _i,i_. Stiff blades, however, trans-
mit unsteady wind loads to the hub and tower unattenuated or magnified compared

to more flexible blades. Also, increasing the blade stiffness for a given con-

struction technique implies using additional blade material which increases

weight and cost. More compliant blades would lessen the elastic loading of the

blade by transferring more of the bending resistance to centrifugal moments but

would result in larger steady deflections and more dynamic overshoot from un-
steady loads.

The need to operate over a wide range of wind speeds creates additional

r problems. From the minimum operating wind speed, or "cut-in" wind speed, to

the "rated" wind speed, the wind turbine must be as efficient as possible.

Above the "rated" wind speed to maximum operating wind speed, or "cut-out" wind

speed, the efficiency must be continuously reduced to prevent overloading.

Typically, the cut-in wind speed is expected to be about I0 mph, the rated wind

speed 20 mph, and the cut-out wind speed 30-50 mph _,4,5_.

Ideally, the way in which one studies engineering systems as complex as
wind turbines is to divide them into a series of sub-problems, and include in

each only a small number of variables. The individual sub-problems are then

2



analyzed in detail, and provide guidance for future studies of larger sub-

problems. To do this in a rational manner, however, requires prior knowledge

of the effect that each of the excluded variables has on the sub-problem being
considered. At the present, there has been insufficient operational experience
with, and analysis of, large axisymmetric wind turbines for such decisions to
be made.

In all rotor-tower systems rotor blade motion, described in a rotating ref-

erence frame, will be coupled to tower motion, the wind environment, and grav-

ity, which are described in a fixed reference frame. In general, the governing
differential equations of motion are non-linear and have many terms with harmonic

coefficients. Experience with aircraft has shown that simplified linear approx-
imations of such systems provide accurate descriptions of the motion about an

equilibrium configuration. Even so, many harmonic coefficients remain, and a

detailed analysis requires extensive numerical techniques. If axisymmetric

rotors are considered (i.e., rotors with three or more equally spaced blades),
then aerodynamic and inertial properties are uniformly distributed about the
aximuth. All of the first harmonic forces transmitted from the rotor to the

tower sum to zero and only weaker, higher harmonic forces remain. Gravity and

linearized aerodynamic forces that act on the rotor blades are dominantly non-
harmonic and first harmonic forces. Thus, by describing blade motion with non-

harmonic and first harmonic quasi-normal rotor coordinates, and neglecting all
higher harmonic forces, the motion of the entire tower-rotor system can be

described by a set of linear constant coefficient differential equations.

The case of two-bladed wind turbines is quite different. Rotor properties
change drastically as the blades rotate from a horizontal position to a vertical
position. Strong twice-per-revolution forces couple rotor motion to tower

motion. This is especially true of the effects of gravity, side winds and yaw-
ing motion. No approximations or simplifications can be made to remove these

dominant harmonic terms from the equations of motion. As such, two-bladed wind

turbines must be treated independently of axisymmetric wind turbines.

2. ANALYSIS

The equations of motion of the wind turbine are derived by considering the

linear perturbations of the tower, nacelle, and turbine blades about a general

equilibrium state. Consistent with this type of analysis, aerodynamic loading
is derived by applying blade element theory, with the relative wind induced by
the wind turbine being determined from momentum theory. These theories are

also used to compute optimal blade twist and taper and to determine blade pitch

settings at off design wind speeds _6_. The inertia forces are determined by
direct application of Newtons Second Law, and the equilibrium equations are de-
rived from D'Alemberts Principle.

Throughout this analysis the wind turbine is modeled with a 3-bladed axi-
symmetric rotor, as shown in figure (i). The turbine blades and tower are

r elastic. The hub, rotor shaft, and nacelle are rigid. However, the rotor
speed is allowed to vary, and may induce perturbation reactions within the

power generating equipment located in the nacelle. The nacelle may yaw freely
or in a restrained manner. Yawing motion is considered to be elastic or
reactionless.

Note that the rotor is located downwind of the tower, and that the blades

are coned away from the plane of rotation. The effect of coning is to create a

steady bending moment along the blades due to the centrifugal force field. This
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moment opposes the aerodynamic moment from steady rotor drag, and thus, reduces

the average elastic bending moment distribution along the span. Additionally,

coning tends to align the net drag force of the rotor with the wind direction.

When the rotor is behind the tower this causes a freely yawing wind turbine to

track the wind. On the other hand, if the rotor is upstream of the tower the

effects of coning are statically destabilizing, and the wind turbine must be

mechanically aligned with the wind. In this paper only the downstream orienta-
tion is considered.

The elastic deformations of the wind turbine are shown in figure (2). The

tower is assumed to bend elastically in two perpendicular directions and is

also allowed to twist. The bending directions are designated x and y. As a

result of tower bending, the nacelle will roll (_2) and pitch (_i) about these

two axes, respectively. The tower can be elastically assymmetric, but bending

and torsion are assumed to be uncoupled.

The tower deflections are modeled by assuming normal modes of vibration.

In order to account for independent translation and rotation of the bedplate at

the top of the tower, a minimum of two modes are needed for each bending direc-

tion. In this paper the first two modes of a cantilever beam are considered.

Tower torsion is modeled by its first natural mode of free vibration. The

equilibrium equation is derived by considering an equivalent single degree of

freedom rigid body restrained by a torsional spring. The spring stiffness is

equal to the effective static torsional stiffness of the tower at the bedplate,

and the mass of the system is determined by requiring the natural frequency of

the rigid body to be equal to the first torsional natural frequency of the
tower.

The virtual hinge concept introduced in reference _7_ provides a means

for describing complex blade motion with a much simpler and more practical

model. The turbine blade is approximated by an equivalent rigid blade elasti-

cally restrained about a virtual bending axis offset from the rotor hub. The

virtual hinge point is chosen so that the bilinear, discontinuous deflection

curve of the rigid blade approximates the fundamental bending curve of the

actual blade. The stiffness of the restraining spring is chosen so that the

rotating natural frequency of the model is identical to that of the actual
blade. The cases of simple bending parallel and perpendicular to the plane of

rotation is shown in figure (3). This approach has been used effectively to

analyze the dynamics of helicopter blades, "prop-rotors" and "tilt-rotors," and

has also been applied to wind turbines D8_.

The deflections of the twisted and tapered turbine blade are modeled by

two pseudo-principal bending axes. The locations and directions of the virtual

hinges and the stiffnesses of the restraints are chosen to approximate the first

two coupled modes. Blade twisting is modeled by an inboard rigid body rotation

near the hub and a single mode of distributed twisting outboard of the virtual
hinges.

Typically, one bending axis will be in a generally chordwise direction (y).
The other will be approximately flapwise (6), and somewhat aligned with the axis

of rotor rotation. The inboard twisting axis (e) will be generally aligned with
the inboard locus of shear centers and will also be inboard of the virtual

hinges. Throughout this paper the blade pitching axis is assumed to coincide

with the inboard twisting axis.

The outboard portion of the blade is allowed to twist about a linear axis,

assumed to be along the locus of shear centers. The blade is divided into i0
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rigid segments, and all aerodynamic and intertial properties of each segment

are varied independently. Elastic twisting is described by assigning a rela-

tive modal amplitude to each segment, and the blade stiffness is specified in

terms of the effective torsional stiffness of the blade tip with respect to the

outboard hinge location.

The absolute motion of the turbine blades is determined by motion relative

to the hub plus the transport motion due to rotor rotation and motion of the

nacelle and tower. As a result, the coupled equations of motion of the entire

wind turbine contain terms which vary sinusoidally about the azimuth. This is

also the case for the linearized equations. The general solution of the system

of linear equations with varying coefficients does not exist. However, by in-

troducing multi-blade quasi-normal blade coordinates suggested in reference D_

the equations of motion of an axisymmetric wind turbine can be transformed into

an approximating set of constant coefficient equations.

Coupling between the rotor and the nacelle and tower is due to forces and

moments acting on the hub. Since the hub is rigid it can only rotate and trans-

late and, as such, can only impart uniform and first harmonic motion to the

turbine blades. This coupling, in turn, can only be reinforced by reactions at

the blade root which vary about the azimuth in the same manner. Higher harmon-

ics and unsynchronized blade motion will result from nonlinearities and random

disturbances, but the coupling with the nacelle and tower is comparatively weak.

Considering only zeroth and first harmonic motion, the blade bending and

twisting degrees of freedom can be written in terms of multi-blade coordinates
as

qk (t) = Po (t) + P1 (t)c°s _k + P2 (t)sin _k" (i)

The individual blades are identified by the subscript k, and _ is the azimuth

angle about the rotor. The time dependent functions, P(t), are independent of

the individual blades. This assumes that each blade follows the same general

path about the azimuth.

The motion implied by this expansion can be visualized by considering a

reference configuration with flapwise motion normal to the plane of rotation,
and chordwise motion in the plane of rotation, as shown in figure (4). As such,

the zeroth flapwise time dependent coefficient represents axisymmetric blade

motion resulting from fore-aft motion of the tower or a uniform change in rotor

drag due to axial wind gusts. The first flapwise harmonic coefficients describe

tilting of the rotor tip-path plane about two perpendicular diameters. This

type of motion can be caused by nacelle yawing or pitching of the tower, or by

steady, non-uniform winds.

The zeroth chordwise coefficient couples with the corresponding flapwise

coefficient, but also represents symmetric in-plane blade motion caused by var-

iations in rotor torque. Similarly, the first harmonic chordwise coefficients

couple with flapping, but also describe the chordwise blade response to lateral

tower motion. If viewed from an inertial reference frame, the effect of this

blade motion would appear as a whirling of the rotor system center of mass about
the azimuth.

When equation (i) is substituted into the governing equations and higher

harmonics are neglected, each of the blade equations is of the form,

(''')o + (''')I c°s _k . (''')2sin _k = 0 (2)



where the expressions in the parenthesis are independent of the individual

blades. By consecutively multiplying the equations for each blade degree of

freedom by i, cos _k and sin Ik, respectively, and summing over all of the
blades, a single constant coefficient equation results for each of the three

time dependent coefficients of each blade degree of freedom.

The final set of governing equations consists of one equation for each of

the tower degrees of freedom, nacelle yaw, hub rotation, and three equations

for each blade degree of freedom. Note that as a result of the approximations

made and using multi-blade coordinates, the total number of equations is 18 and

is independent of the number of turbine blades. As such, this analysis can be

applied directly to any axisymmetric wind turbine.

The final product of this analysis is a set of linearized, second order,

constant coefficient differential equations. The equations are of the form,

+ {cl+ E ll= (3)
where X is an n-dimensional column vector holding the system degrees of freedom,

[M], [C], and [K] are the generalized n-dimensional square mass, damping, and

stiffness matrices, respectively. These equations are derived in _6].

The stability of the wind turbine is examined by first using state-space

analysis to transform equation (3) into a 2n-dimensional first order vector dif-

ferential equation of the form,

[A]_ + [B]Y = O. (4)

Equation (4) is then converted into a standard eigenvalue problem by assuming a
solution of the form,

-- -- %t
Y = Yo e (5)

Thus,

= _-IB_y and _ = %Yo e%t (6)

and finally,

_o = _-IB_Yo" (7)

This equation has a non-trivial solution only if,

The eignevalues, _, are, in general, complex and if so must appear as com-

plex conjugate pairs. In order for the wind turbine to be stable all real

_I eigenvalues and the real parts of all complex pairs must be negative.

3. RESULTS AND DISCUSSION

The results presented in this section are based on a reference wind turbine

configuration. This configuration has a 3-blade 300 ft. diameter rotor. Each

blade weighs 24,000 lb. The rotor speed is 2.44 rad./sec. The tip speed ratio

is i0.0 and the blade lift coefficient is uniformly 1.0 at the rated wind speed

of 36 ft./sec. The cut-in and cut-out wind speeds are 24 ft./sec, and
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60 ft./sec., respectively. The flapwise, _B' and chordwise, _, rotating blade
natural frequency ratios are 2.5 and 4.2, respectively. Built-in coning is 0.15
rad. The tower is a thin-walled, isotropic steel cylinder 1.5 rotor radii in

height and 0.i0 radii in diameter. It weighs 330,000 lb. and constitutes about

half the weight of the entire wind turbine. The natural frequency ratios of the
first two cantilever bending modes are 3.83 and 24.0. The first torsional mode

of the tower has a natural frequency ratio of 28.3 which reduces to 5.93 with

the nacelle clamped to the bedplate. The power system is a 2 megawatt, 1200 rpm

synchronous generator. The natural frequency ratio of the rotor generator

assembly, measured at the rotor is 1.53. Damping windings provide an equivalent

viscous damping ratio of 0.i0. Structural damping in the tower and rotor blades

is modeled by 0.5% of critical viscous damping. The principal blade bending
axes are parallel and perpendicular to the plane of rotation at the rated wind

speed. The details of this configuration are discussed extensively in _6_.

The wind turbine model has 18 open-loop degrees of freedom. This results,

in general, in 18 damped sinusoidal modes of vibration. Of these, 8 proved to
be potentially unstable. Four modes were always stable, but influenced the

stability of the other 8. Only the modes dominated by blade torsion did not
significantly influence the stability of the wind turbine. This can be attrib-

uted mainly to the large torsional stiffnesses required for acceptable steady-
state performance _5_.

The 12 critical complex characteristic values (eigenvalues) are given in

table (i) for the model of the reference wind turbine operating in a rated wind

of 25 m.p.h. The real part of the eigenvalue is the negative of the product of
the modal damping ratio and the modal natural frequency. It is defined here as

the "exponential decay rate." The imaginary part of the eigenvalue is the
damped modal frequency of vibration.

The three flapping modes 6, 8, and 9 were always stable. However, the
proximity of their frequencies to those of the chordwise and tower modes influ-

enced the stability of these modes. The two cyclic chordwise modes, though

generally stable, showed the greatest tendency toward instability. The upper
frequency tower modes were, in general, stable but are sensitive to structural

tower damping and rotor damping. The frequency of the symmetric chordwise mode

is much higher than the uncoupled natural frequency. This is a result of cou-

pling with rotor rotation, and in the absence of mechanical rotor damping this
mode can be unstable. Modes i0 and 12, though labeled "lateral tower motion"

and "rotor rotation," respectively, are very strongly coupled, and can be diffi-

cult to identify with only one of the two degrees of freedom. Both of these

modes can be unstable. The yawing mode was never unstable, but in some cases

was only marginally stable. The lower frequency longitudinal tower mode was

also always stable, and like the flapping modes tended to influence the stabil-
ity of neighboring modes.

The reference wind turbine represented in table (i) is one of the more
stable configurations considered in this study. In all modes except those dom-

inated by cyclic chordwise blade motion the exponential decay rates, -_mn, are
less than -0.i0, giving a modal time to half amplitude of about 7 sec. The

eigenvalues of the critical modes are given in table (2) for five additional

wind speeds. The first two are below the rated wind speed, and the last three

are above this speed. The highest wind speed is for the cut-out wind speed of
40 m.p.h.

Large wind turbines will operate for as long as 20 years in a continuously
varying environment. They will be subject to transient loading from gust that

can exceed 50% of the mean wind speed in less than i sec. Eli. In order to

7



guard against structural and electrical overloading the response of the wind

turbine to environmental disturbances should decay as quickly as possible.

Otherwise successive changes in wind speed or direction may compound the tran-

sient loading to the point of causing damage. Additionally, the wind turbine

should not depend on an augmentation system for stability or short term struc-

tural soundness. For these reasons the time for a mode to decay to half ampli-

tude, or equivalently the exponential decay rate, was chosen as the criterion

for measuring the stability of the wind turbine.

On the basis of all of the configurations studied, a modal time to half

amplitude of 7 sec. was selected to define marginal stability. A small number
of the wind turbines studied exceeded this criterion in all modes and at all

wind speeds. Most configurations, however, exhibited from 2 to 4 marginally

stable modes, and some as many as 6 modes.

3.1 Cyclic Chordwise Modes

The modes which most frequently failed to meet the stability criterion are
5 and 7, dominated by cyclic chordwise blade motion. From a fixed reference

frame the chordwise blade motion appears to be forward and retrograde whirling
of the rotor system center of mass, as depicted in figure (4) for a 4-bladed

wind turbine. When uncoupled from all other degrees of freedom the natural

frequency of the forward whirl is equal to the single blade chordwise natural
frequency plus the steady angular speed of the rotor. The frequency of the

retrograde whirl is equal to the single blade chordwise natural frequency minus

the steady angular speed of the rotor.

The stability of these two modes as a function of wind speed for the refer-

ence wind turbine is shown in figure (5) by the solid lines. The horizontal

dashed lines show the effects of structural damping equivalent to 0.5% of crit-

ical viscous damping and profile drag. Without the former these modes, collec-

tively, would be unstable over almost the entire operating range of wind speeds.

Note that the stabilizing effect of structural damping is approximately propor-

tional to the level of damping. If the effective chordwise damping is increased

to 1.0% of critical viscous damping, the exponential decay rates of the lower and

upper chordwise modes become -0.097 and -0.086, respectively, at the rated wind

speed. The only other mode affected is the symmetric chordwise mode for which

the stability increases by about 10%.

The primary cause of this potential instability is negative chordwise aero-

dynamic damping associated with chordwise blade motion. As the blade moves in

the direction of positive chordwise bending the dynamic pressure of the total

relative wind increases, and the induced angle of attack along the blade de-

creases. From the derivation in _, the resulting chordwise moment perturba-
tion, at any spanwise station, is proportional to,

-Vn_r2sin _ (a)

where Vn is the net relative wind velocity normal to the plane of chordwise
bending, r is the distance from the virtual bending hinge, i is the chordwise
angular speed about this hinge and e is the net blade angle of incidence measured

counter-clockwise from the plane of chordwise bending. This is shown in fig-

ure (6). When integrated along the blade span, the total bending moment can be
either positive, indicating positive damping, or negative, indicating negative

damping. Note that the orientation shown in figure (6) implies the latter.



The effect of this moment on the stability of the chordwise modes can be

estimated by considering its effect on the stability of uncoupled chordwise

oscillations without structural damping and profile drag. The curvilinear

dashed line in figure (5) shows the exponential decay rate of this single de-

gree of freedom as a function of wind speed. Qualitatively, the actual behavior

of the modes is similar to that of the idealized case. The stability increases

at off-design wind speeds and decreases sharply as the rated wind speed is
approached. The "cusp-like" feature of these curves is due to the wind turbine

operating in two different regimes about the rated wind speed. Below the rated

wind speed of 36 ft./sec, there is less power in the wind stream. The wind tur-

bine must therefore operate at a lower average lift coefficient for a fixed

rotor speed. Above the rated wind speed the lift coefficient must also be re-

duced in order not to exceed the rated power. In both cases the blade pitch

changes are negative so that the leading edge of the blade, and the direction

of chordwise bending, are rotated into the wind. At the cut-in wind speed of

24 ft./sec, and the cut-out wind speed of 60 ft./sec, the blade pitch settings

are -0.065 rad. and -0.244 rad., respectively.

The orientation shown in figure (6) is for the outboard portion of the ref-
erence wind turbine blade, which has the direction of chordwise bending parallel

to the plane of rotation at the rated wind speed. If the blade is rotated suf-

ficiently into the wind, the relative wind vector will lie between the local

zero lift direction and the plane of chordwise bending. When this occurs the

expression on line (a) changes sign, and the effects of chordwise motion act as

positive damping. Thus, at off-design wind speeds the stability of the chord-

wise modes is improved by the required blade pitch changes.

Note that in all cases of unstable or weakly stable behavior uncovered in
this study, with the exception of "chordwise-tower resonance" to be shown in

figure (13), the destabilizing factor can be traced to aerodynamic forces simi-
lar to those just described hut of a more complicated nature. These interactions

are analyzed and examined in greater detail in _ .

Based on this observation, the inherent stability of the chordwise modes

should be improved by a rotor system having the principal blade bending axes
rotated into the wind. Figure (7) shows this trend for the reference wind tur-

bine at its rated and cut-out wind speeds. The behavior at other wind speeds

is within these bounds. The exponential decay rates of both modes can be

reduced to acceptable levels, below -0.i0, by rotating the bending axes by

about 16°. Furthermore, it was found that at all wind speeds, the only signif-

icant changes are to upper and lower frequency cyclic chordwise modes _ .

Blade stiffness also effects the stability of the chordwise modes. The

influence of chordwise stiffness on these modes is shown in figure (8) for wind

speeds of 36 ft./sec, and 60 ft./sec. The effect of flapwise stiffness is shown
in figure (9) for the same wind speeds. The inserts show the variation of the

single blade natural frequency ratios as a function of blade stiffness. The

effect of increasing the chordwise stiffness is, in general, to increase the

stability of both modes, though the increase is more pronounced at the lower

wind speed. The stability of the upper frequency mode actually decreases
slightly below a chordwise stiffness of about l.lxl07 ft.-ib./rad.

The effects of blade stiffness on the sensitive critical modes are pre-
sented in tables (3 and 4). The tables are for the rated and cut-out wind

speeds, respectively. The chordwise modes (5 and 7) clearly show the greatest
sensitivity to variations in blade stiffness and the orientation of the prin-

cipal bending axes. Note, however, that none of the configurations in these
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figures satisfy the stability criterion of having all modes decay to half ampli-
tude in less than 7 sec. at all wind speeds.

At a wind speed of 60 ft./sec, none of the configurations meet this criter-
ion in all modes. In all cases, the mode responsible for this failure, other

than the chordwise modes, is the lower frequency lateral tower mode (i0). The

stability of this mode is not severely effected by blade stiffness. However,

in those cases where changes in the flapwise stiffness improves the stability

of the lower frequency chordwise mode, the stability of the lower frequency
lateral tower mode is reduced.

One of the primary causes of the weakly stable behavior of the wind turbine

is due to the restrained yawing motion _5,16_. Figure (10) shows the effect of

elastic yawing stiffness on the chordwise modes at the rated wind speed. Note
that the nacelle is assumed to be locked to the tower between controlled changes

in the yawing angle. The stability of these modes is the greatest for no yawing
stiffness. The insert shows the varition of the stability of the chordwise

modes as a function of wind speed for this case. The modes are again the least

stable at the rated wind speed. The stability of the lower frequency chordwise

mode increases sharply below a stiffness of about ixl09 ft.-ib./rad. This is
about half the stiffness of the reference tower. Note that low torsional tower

stiffnesses represent a gradual decoupling of total tower torsion. Yawing

stiffness would result from softening the upper end of the tower in torsion or,

for very low stiffnesses, from the yaw controller alone. The decreased partici-

pation of the tower in torsion does not, however, significantly effect total

torsional inertia. Approximately 95% of the effective yawing moment of inertia
is derived from the rotor and the nacelle.

The sensitive critical modes are shown in table (5) for a freely yawing

configuration at the cut-in, rated, and cut-out wind speeds. Note that the

yawing mode (3) is not oscillatory, but is represented by two exponentially

decaying modes. The rapidly decaying mode results from the response of heavily

damped flapwise blade motion. The slowly decaying mode is due to the sluggish

response of the rotor and nacelle.

In reference _5_ concerning steady state loading it is shown that a con-
trolled yawing motion is, in general, preferred to a freely yawing wind turbine.

A yawing stiffness of only 5x107 ft.-ib./rad, is sufficient to hold the yawing

angle to within 0.01 rad. This could result from stiffness built into the yaw
control mechanism or the bedplate, and is low enough to effectively uncouple

the nacelle and the tower in torsion. The exponential decay rates and frequen-

cies of vibration of the critical modes are shown in table (6) for this stiffness

and the rated wind speed. Note that the yawing mode frequency is 1.57 rad./sec.

The addition of 10% of critical viscous yaw damping based on the yawing

mass carried by the tower is also considered. This results in a peak yaw damp-

ing moment which is only about 1/8 of the peak yaw moment due to stiffness. As
such, the tower and nacelle are still torsionally uncoupled. The exponential

decay rates and frequencies of this configuration are also shown in table (6).

Note that the yaw damping doubled the decay rate of the upper frequency chord-
wise mode. The critical modes are tabulated in table (7) for the cut-in wind

speed, the cut-out wind speed and three intermediate wind speeds. Signifi-

cantly, the time to half amplitude of all the modes is less than 7 sec. at all

wind speeds. On an overall basis this is the most stable configuration consid-
ered thus far.
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3.2 Upper Frequency Lateral Tower Mode

In tables (6 and 7) the least stable modes are modes 2 and ii, the later_l

tower modes. Note that for wind speeds below about 50 ft./sec., the stability

of the upper frequency longitudinal tower mode is less than the stability of

the upper frequency lateral tower mode. However, the stability of the longi-

tudinal mode has remained relatively uneffected by the parametric variations

considered thus far, and both modes are effectively stabilized by small amounts

of structural damping. An equivalent viscous damping ratio of only 0.005 based

on free tower vibration increases the stability of both upper frequency tower

modes by about 0.13. Without structural damping the lateral tower mode can be

unstable. However, this is an extreme case and not representative of a real
tower.

The significant degrees of freedom of the upper frequency lateral tower

mode are symmetric chordwise blade motion (pinwheel-like motion) and rotation

of the rotor shaft relative to the generating system. Tables (3 and 4)

showed the effects of blade stiffness and bending axis orientation on this

mode. Figure (ii) shows the effects of rotor stiffness and damping on the

stability of the upper frequency lateral tower mode for the reference wind

turbine at the cut-out wind speed. The insert shows the effect of damping

alone for a stiffness of 1.82xi08 ft.-ib./rad., and for identical damping but

no stiffness. The latter models a non-synchronous generator. In all cases

increased damping has a destabilizing effect. Note that for low stiffnesses

the effects of stiffness are not significant compared to damping. Furthermore,

without structural tower damping the wind turbine can be stable for all rotor

stiffness only without rotor damping. Again, the tendency of this mode toward

instability is due to aerodynamic forces. Increasing both rotor stiffness and

damping alters the relative amplitudes and phase angles of the dominant degrees

of freedom, tower motion, rotor motion and symmetric chordwise blade motion, in

a manner which makes the aerodynamic damping more negative at the higher wind

speeds. Note that for the reference wind turbine rotor stiffness does not sig-

nificantly effect the stability of the upper frequency lateral tower mode at
and below the rated wind speed.

3.3 Symmetric Chordwise Mode

The only other modes significantly effected by rotor stiffness and damping
are the lower frequency lateral tower mode, the rotor rotation mode, and the

symmetric chor_wise mode. The effects of rotor damping and stiffness on the

chordwise mode is shown in figure (12). Recall that due to coupling with rotor

rotation the frequency of this mode is much higher than that of uncoupled single
blade chordwise vibration. The data is for a wind speed of 60 ft,/sec., but the

data for other wind speeds is virtually identical. Figure (12a) shows the

effect of stiffness on this mode for rotor viscous damping ratios of 0.01 and

0.i0. Figure (12b) shows the effect of damping for different stiffnesses. The
dashed line is for a system with no generator stiffness but with damping equal

to that of the reference system with a rotor stiffness of 1.82xi08 ft.-ib./rad.

Note that again, because of the comparatively high frequency of this mode, the

effects of damping are stronger than those of stiffness.

The symmetric chordwise mode is easily stabilized by small amounts of rotor

damping and by itself is one of the more stable modes. However, as shown in

figure (13), when the frequency of the upper frequency lateral tower mode ap-

proaches the frequency of this mode the tower mode becomes unstable.
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In this figure the tower mass is held constant. The lowest stiffness re-

sults from a less efficient tower design, possibly representing a lattice type

construction. On the other hand, a cylindrical fiberglass tower weighing as

much as the steel tower would be only about 30% as stiff. Note that a cylin-

drical aluminum tower weighing as much as the steel tower would also be equally

as stiff. The highest stiffness in figure (13) implies more efficient use of
tower material. The use of high strength composites would also raise the

stiffness of a constant weight tower, but at the present these materials are
prohibitively expensive.

The important feature of figure (13) is the "resonance" between the

symmetric chordwise mode and the upper frequency lateral tower mode. As the

frequencies of the two modes converge, the tower mode becomes very unstable.

In fact, this is the most severe instability encountered during this study. It
is also the only "resonance" phenomenon. In all other cases, unstable behavior

is due primarily to aerodynamic forces.

This potential instability can be avoided by adequately separating the fre-

quencies of the two participating modes. From table (i) the frequency of the

upper frequency lateral tower mode is determined reasonably well by suppressing

all motion except for the second bending mode of the tower. Unfortunately, the
uncoupled natural frequency of symmetric chordwise blade motion does not accur-

ately predict the frequency of the full-system symmetric chordwise blade mode.

However, the frequency of this mode can be easily determined from a two degree

of freedom model involving symmetric chordwise blade motion and rotor motion,

as shown in figure (14). This simplified model predicts the frequencies of the
rotor mode as well.

The two governing second order differential equations are,

Ib_ + (Ib + eob)_+ (_2eob + ky)y = 0 (9)

and,

NB(I b + eob)_ + I_o_ + k_ = 0 (i0)

where Nb is the number of turbine blades and,

14o = IV + Nb(l b + 2e_ b + e2Mb). (ii)

The natural frequencies of vibration, m, can be found by solving the resulting
bi-quadratic characteristic equation for

_i 1 I(m$ _)_i_$ _)2 .a 2 2 }m = 2(1 - a) + m ± - m + 4 mym_ (12)

where

my = the uncoupled chordwise blade natural frequency,

_2eo b + ky

ib (13)
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m_ = the uncoupled natural frequency of rotor perturbations,

k___ (14)I_o

and

- NbIb (1 e°b_ 2a I*o +-_-b/ (15)

The frequencies of the rotor mode and the symmetric chordwise mode are

shown in figure (15) as a function of effective rotor stiffness. The chordwise

stiffness is 1.49xi08 ft.-ib./rad. The error in the simplified prediction of

the frequency of the chordwise mode is less than 10%, and the slopes are essen-

tially the same. The approximate rotor mode frequency is very accurate below a
stiffness of about 1.5x108 ft.-Ib./rad. Above this value the absolute error is

not large, but the shape of the simplified curve differs greatly from that of

the full model. This discrepancy is due to coupling with the tower, and will
be discussed later in this section.

The variation of the symmetric chordwise mode and rotor mode natural fre-

quencies are shown in figure (16) as a function of chordwise stiffness. The

effective rotor stiffness is 1.82xi08 ft.-ib./rad° Again, the simplified and

full model frequencies are in good agreement. Note that the rotor mode is

relatively insensitive to the chordwise stiffness. Figure (16c) shows the

effect of chordwise structural damping on the stability of the symmetric chord-

wise mode. The rotor damping is absent in this case. Without structural damp-

ing this mode, like the cyclic modes, is unstable. As with the cyclic modes,

only a small amount of structural damping is necessary to stabilize this mode.

3.4 General Effect of Tower Stiffness

The effects of tower bending stiffness on the most sensitive critical modes

are shown in the first four columns of table (8). The tower mass is held con-

stant, and the stiffness is effectively varied by changing the natural frequen-
cies of the tower. The first two columns show the effect of decreasing and in-

creasing the frequencies by 50%, respectively. Columns three and four represent

a non-symmetric tower. In column three the natural frequencies in the longitud-
inal directions have been increased by 50%, and in column four the natural fre-

quencies in the lateral direction have been similarly increased. Column five

shows the effect of reducing the mass of the tower by a half without changing
the bending natural frequencies. All other parameters are the same as the

reference wind turbine. The wind speed is 36 ft./sec°, and the structural
damping is maintained at 1/2% of critical viscous damping for all five cases.

As such, the exponential decay rates of the tower mode change with frequency.

Note that in columns i, 2 and 5 the frequencies of the lower frequency

lateral tower modes are very close and appear to be approaching resonance. In
column 3 the frequencies in the longitudinal direction increased so that the

longitudinal tower modes are removed from the lateral tower modes. In this

case, all the tower modes are satisfactorily stable. However, in column 4 the

frequencies of the lateral modes are elevated away from the longitudinal modes,

yet the stability of the tower modes are the same as in column 2 where both

sets of tower frequencies are raised. The common denominator is the separation

of the lower frequency lateral tower mode from the rotor mode. In columns i, 2,
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and 4 the separation between the natural frequencies of the lateral tower mode
and the rotor mode is increased relative to column 3. In the latter case the

frequency separation is the same as for the reference tower, and in both cases

the stability of the rotor mode is respectively the same.

3.5 Parametric Coupling Between the Rotor Mode and the Lower Frequency
Lateral Tower Mode

The stability of the rotor mode and the lower frequency lateral tower mode

is shown in figure (17) as a function of rotor stiffness for the cut-in, rated

and cut-out wind speeds. The viscous damping ratio of the rotor in the first
two cases is 0.i0, and for the last case ratios of 0.i0 and 0.01 are considered.

The dashed line shows the stability of the uncoupled rotor mode, The stability

of the uncoupled tower mode is very slightly below the borderline of stability.
The effects of rotor damping on the two modes for a wind speed of 60 ft./sec.

are shown in figure (18). The data in this figure is for a rotor stiffness of

1.8x108 ft.-ib./rad., and for the same damping but with the stiffness removed.

The latter case represents a non-synchronous generator. The eigenvalue of the

rotor mode in this case is not complex, but real and negative. The variation

of this eigenvalue is denoted by a dashed line. The effects of rotor damping
for other rotor stiffnesses and wind speeds are the same as shown in this

figure.

In all cases, increasing the rotor damping has a significant stabilizing

effect on the rotor mode. Note in figure (17c) that with 1% viscous rotor damp-

ing the tower mode can become unstable. However, such small amounts of damping
are not practical and will not be given further consideration.

The most significant feature of figure (17) is the general tendency of the
stability of the tower mode to increase with increasing rotor stiffness while

the stability of the rotor mode correspondingly decreases. For "soft" rotors

the stability of the coupled rotor mode is accurately predicted by the uncoupled

rotor mode, and the stability of the coupled tower mode is slightly better than
that of the uncoupled mode. However, as the rotor stiffness is increased the

stability of the rotor mode decreases, and approaches the stability of the un-

coupled tower mode. Conversely, the stability of the tower mode increases

steadily over the middle range of rotor stiffness, and approaches a constant

value for large rotor stiffness. Note that over the entire range of rotor
stiffness the optimal stiffness, with respect to the rotor mode and the lower

frequency lateral tower mode, is about 1.9xl08 ft.-ib./rad.

The variation in the modal frequencies of these two modes is shown in fig-
ure (19). The dashed lines show the natural frequencies of the uncoupled modes.

For "soft" rotors the frequency of the rotor mode is accurately determined by
the coupling between the rotor and symmetric chordwise blade motions. Recall

from figure (15) that coupling decreases the frequency of the rotor mode over

the middle range of rotor stiffnesses. For stiff rotors the frequency of this

mode tends to a constant value. This behavior is not indicated by either the
uncoupled rotor mode, or coupling with symmetric chordwise blade motion. Note

that the uncoupled tower natural frequency is about 10% lower than this fre-

quency. At the lower range of rotor stiffnesses the tower frequency approaches
a value of about 3.75 rad./sec.

For "stiff" rotors the frequency of the tower mode increases monotonically
with rotor stiffness at a rate slightly slower than the uncoupled rotor mode.

Thus, for soft rotors the rotor and tower modes exhibit easily predicted
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behavior. However, for stiff rotors both the frequency and stability character-
istics of the two modes are reversed. The rotor mode "looks" like the tower

mode, and the tower mode "looks" like the rotor mode. Recall that it was noted

at the beginning of this section that the rotor mode and the lower frequency

lateral tower mode are easily confused.

The only modes significantly effected by rotor stiffness are the symmetric

chordwise mode, the rotor mode, and both lateral tower modes. Each mode was

shown to be potentially unstable or very weakly stable. However, parametric

coupling among these modes was only partially examined. Variations of the

basic tower bending modes were not considered. Because of the destabilizing

coupling between the tower and the rotor it is important that the tower model

be as accurate as possible. The first two bending modes of a cylindrical canti-

levered beam are considered to be adequate for a general systems model. However,

an actual tower will not necessarily be of uniform cross-section or stiffness.

The first two natural frequencies of vibration may differ from those of a canti-

lever beam. End effects due to compliance within the foundation or at the

nacelle bedplate can alter both the frequencies and the mode shapes, These two

factors may effect the second mode more than the first, but considering the un-

stable parametric coupling between the second mode of a cantilevered tower model

and the symmetric chordwise mode, both tower modes must be accurately represented.

The effective rotor stiffness is a function of the rated output, the elec-

trical power angle, and the gear ratio between the rotor and the generator. In

this study the rotor design tip speed ratio, rated output and generator speed

are fixed. Rotor stiffness is thus determined by the rotor power angle. If the
design tip speed ratio or generator speed is varied the effective inertia of the

generating system is also changed. For the system considered this is only about
20% of the total effective rotor inertia. However, if the generator speed is

increased from 1200 R.P.M. to 1800 R.P.M, the generator inertia will decrease by

about 1/3 due to the reduced step-up gear ratio. The effective inertia and

stiffness at the rotor will decrease by about 56%. These factors, as well as

more extensive variations in rotor blade inertia properties and virtual hinge
locations, should be studied.

3.6 Rotor Speed

One parameter that should be discussed is the steady rotor speed. For

synchronous generators the rotor speed is constant, but for non-synchronous

generators the rotor speed can vary with the wind speed. Note that with field

control the equilibrium speed of non-synchronous generators can also be fixed.

This is most likely to be the case when constant frequency A.C. power is needed.

Direct current or variable frequency alternating current can be converted to

constant frequency A.C. current, but this process is more expensive and less

efficient than producing constant frequency current directly. In fact, for

this reason synchronous generators are considered to be the best source of

electrical power. This is especially true for power grids that would use large

wind turbines to supplement conventional or nuclear power generating stations.

Non-synchronous generating systems have been represented in this study as gen-
erators with damping, but without stiffness.

Note that for peak efficiency the tip speed ratio of the wind turbine

should be maintained at its design value. However, in reference EI_ it was
found that increasing the rotor speed in winds above the rated wind speed

greatly increased the steady loading on the wind turbine. Furthermore, since

the available power, in this case, is always greater than the rated power there
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is no reason to increase the rotor speed. Thus, for high speed winds the field

would be adjusted to prevent an increase in rotor speed. In fact, it is shown

in reference _ that the steady loading on the wind turbine can be reduced in
high speed winds by reducing the rotor speed. This may also cause the blades

to stall but is not considered in this paper.

For wind speeds below the rated wind speed a significant increase in effi-

ciency can be achieved by reducing the rotor speed in order to maintain a con-

stant tip speed ratio. The reference wind turbine has a calculated efficiency

of 51.7% of the rated wind speed, but at the cut-in wind speed the efficiency

drops to 36.5% _. Thus, by reducing the rotor speed, the efficiency at the
cut-in wind speed can be increased. Note that the allowable range of wind

speeds is in part determined by the output range of the generating equipment.

This is typically about a decade. By increasing the efficiency at the lower

wind speeds, the cut-in wind speed can be reduced, and the total wind power

available to the wind turbine can be similarly increased.

A further means of extending the range of useful wind speeds is to use two

generators. Above a pre-set power level both generators would be used. Below

, a certain power level, where the two generators would be operating at a compar-

atively low efficiency, one could be disconnected so that a single generator

would operate at a higher efficiency. This would extend the power range of the
wind turbine beyond the limits of a single generator. This would also allow

maintenance to be performed on the generating equipment without shutting down

the entire system. Also, if one generator failed the rotor could still be con-

trolled by the other, reducing the probability of damaging the wind turbine by
overspeeding.

However, recall from figure (18) that non-synchronous generators can cause

the lower frequency lateral tower mode to be only weakly stable. One possible

way to eliminate this problem is to use synchronous generators and a gearbox

with dual power take-off shafts, each having a different gear ratio. Above a

given wind speed the wind turbine would operate at one rotor speed, and power
would be drawn off the lower speed ratio shaft. At a specified lower wind

speed the rotor speed would be reduced, and a clutch would be used to couple

the generating system to the higher speed shaft. Such a system is not as effi-

cient as an infinitely variable speed generating system, but it is more effi-
cient than operating at one rotor speed, provided gearing losses are not exces-

sive. The gearbox and power generating system normally represent only about 10%

of the total cost of the wind turbine so the the added mechanical complexity

could prove to be worth the investment.

Again from figure (17), this system could also cause the stability of the

tower mode to be unacceptable. When the gear ratio between the rotor and the

generator is changed so is the effective rotor stiffness. Thus, the wind

turbine will not be equally stable at both rotor speeds. The twin synchronous
generating system can alleviate this problem. At low wind speeds one generator

would operate off of the higher speed ratio shaft and in higher speed winds both

generators would operate off of the lower speed ratio shaft. By appropriately
selecting the individual generator stiffnesses the total effective rotor stiff-

ness can be held constant at both rotor speeds.

From the point of view of net output efficiency, range of operating wind

speeds, maintenance, and stability the last system is superior to either the

single speed ratio synchronous system or the infinitely variable speed system.

The only difference, dynamically, between this system and those already examined

is to consider the stability at the lower shaft speed.
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Column i in table (9) shows the stability of the reference wind turbine in

a 24 ft./sec, wind with the rotor speed reduced by 1/3 in order to re-establish

the design tip speed ratio of i0. The rotor stiffness is 1.8x108 ft.-ib./rad.

"The yawing stiffness is 5x107 ft.-ib./rad, with a viscous damper providing 10%

of critical viscous yaw damping. This system was shown previously in tables

(6 and 7), and is one of the most stable configurations studied in this paper.
By comparing table (9) with table (7), the most obvious effect of reducing

the rotor speed is to reduce the stability of several modes. This is not due

to the onset of unstable behavior, but is caused by the inherent flap-wise

blade damping being approximately proportional to the tip speed ratio. In all

cases, the effected modes are still very stable.

° Note that the stability of the upper frequency flapwise blade mode and the

lower frequency chordwise blade mode are effected more severly than the other

modes. The stability of the former decreased more drastically than that of the

other modes, and the stability of the latter increased by about 30%. Column 2

shows the effect of reducing the rotor speed by only 10% so that the uncoupled

natural frequencies of these two mode are the same. The coupled chordwise mode

vibrates with a frequency of 8.17 rad./sec., but the coupled flapwise modal fre-

quency is considerably higher. This is due to coupling with yawing motion.
From table (6), the 10% rotor speed reduction decreased the stability of the

flapwise mode and increased the stability of chordwise mode. Resonance did not

occur, and the transition from the rated rotor speed to a lower rotor speed can

be accomplished safely. However, this may not be the case for different rotor

speeds, or for configurations which are inherently less stable at their rated

rotor speed.

It is not the purpose of this paper to explore in detail any one power gen-

eration scheme. Non-synchronous generators are more efficient in low speed

winds than synchronous generators, and can subsequently operate over a wider

range of wind speeds. These systems are inherently less stable than synchronous

systems, and the extended output range can exceed the capacity of a single gen-

erator. The twin synchronous generating system with a two speed gearbox is
offered as a workable compromise. It is clear from the data that such a system

is satisfactorily stable if the rotor speeds and generator stiffnesses are

properly chosen, and if the wind turbine is sufficiently stable at its rated

wind speed. In this case, the rated stability was established largely by soft-

ening the yawing restraint and including a viscous yaw damper.

3.7 Rapid Yawing with a Side Wind

Column 3 in table (9) shows the stability of the wind turbine under very

adverse steady operating conditions. This is also the last case considered in
this section. The reference wind turbine with the soft yawing restraint is con-

sidered to be operating in 60 ft./sec, winds, skewed by 0,3 rad. The wind

turbine is also yawing at a constant rate of 0.i0 rad./sec, toward the wind.
This same configuration was shown in table (7) for head-on winds and no steady

yawing motion. By comparison the side winds and the yawing motion have essen-

tially no effect on the stability of the wind turbine. This is significant

since the stability of the wind turbine under all reasonable operating condi-

tions can be determined by considering only head-on winds.
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4. CONCLUSIONS

The results shown in this paper indicate that, if properly designed, large

horizontal-axis asixymmetric wind turbines can exhibit satisfactory stability

over their entire operating range of wind speeds without active augmentation

systems. However, weakly stable or unstable behavior can be caused by negative

aerodynamic damping in the plane of rotation and a strong mechanical instability

can result from improperly matching the rotor and tower stiffnesses. The param-

eters which tend to improve the stability of the wind turbine the greatest are

the yawing stiffness and viscous damping ratio. Additional significant improve-

ments to the stability of the wind turbine result from increased structural

damping and rotating the principal blade bending axes into the wind. In fact,

without structural damping the wind turbine may be unstable. Electrical gener-

ator damping is also necessary to insure the stability of the wind turbine.

Also, synchronous generating systems are inherently more stable than variable

speed system due to the effects of generator stiffness.

5. REFERENCES

i. Eldridge, Frank R., Wind Machines, MTR-6971, The Mitre Corp., October 1975.

2. Krenz, Jerrold H., Energy: Conservation and Utilization, Allyn and Bacon,
1976, pp. 277-284.

3. Coste, Wayne H. and Lotker, Michael, "Evaluating a Combined Wind Power/

Energy Storage System," Power Eng., 8 (5), 48-51 (1977).

4. Jorgensen, G. E., Lotker, R. and Mierer, R. C., "Design, Economic and
System Considerations of Large Wind Driven Generators," IEEE Trans. Power

Appar. Syst. PAS-95 (3), 875-878 (1976).

5. Smith, R. T., Swanson, R. K. and Johnson, C. C., et al., "Operational,

Cost, and Technical Study of Large Wind-Power Systems Integrated with

Existing Electrical Utility," llth. Intersociety Energy Conversion Engi-

neering Conference, Proceedings, Vol. 2, State Line, Nev., Sept. 12-17,
1976. AIChE, 1976, pp. 1754-1760.

6. Rosen, G., Deabler, H. E. and Hall, D. G., Economic Viability of Large

Wind Generator Rotors," 10th. Intersociety Energy Conversion Engineering

Conference Proceedings, Newark, Del., Aug. 18-22, 1975, Part II, IEEE,
1975, pp. 225-230.

7. Ormiston, R. A. and Hodges, D. H., "Stability of Hingeless Rotor Blades in

Hover with Pitch Link Flexibility," AIAA/ASME/SAE 17th Structures, Struc-

tural Dynamics, and Materials Conference, King of Prussia, Pa., May 5-7,
1976, Proceedings, AIAA, 1976, pp. 412-420.

8. Friedmann, P.p. and Yuan, C., "Effect of Modified Aerodynamic Strip Theory

on Rotor Blade Aeroelastic Stability," AIAA/ASME/SAE 17th Structures,

Structural Dynamics, and Materials Conference, King of Prussia, Pa.,
May 5-7, 1976, Proceedings, AIAA, 1976, pp. 398-411.

9. Friedmann, p. p., "Aeroelastic Instabilities of Hingeless Rotor Helicopter

Blades," J. Aircraft, i0= (i0), pp. 623-631 (1973).

18



i0. Young, M. I., Bailey, D. J. and Hirschbein, M. S., "Open and Closed Loop

Stability of Hingeless Rotor Air and Ground Resonance," Specialists Meet-

ing on Rotorcraft Dynamics, American Helicopter Society and N.A.S.A. Ames

Research Center, Moffet Field, Calif., Feb. 13-15, 1974, Proceedings,

paper no. 20.

ii. Johnson, W., "Theory and Comparison with Tests of Two Full Scale Prop-

Rotors," Specialists Meeting on Rotorcraft Dynamics, American Helicopter

Society and N.A.S.A. Ames Research Center, Moffet Field, Calif.,

Feb. 13-15, 1974, Proceedings, paper no. 16.

12. Ormiston, R. A., "Rotor Dynamic Considerations for Large Wind Power Gen-

erator Systems," Wind Energy Conversion Systems, NASA TM X-69786, 1973,

pp. 80-88.

13. Friedmann, P. P., "Aeroelastic Modeling of Large Wind Turbines," Presented

at 31st. Annual National Forum of the American Helicopter Society, May

1975. Preprint No. S-990.

14. Mirandy, L. P., "Rotor Generator Isolation for Wind Turbines," AIAA/ASME

18th Structures, Structural Dynamics and Materials Conference, San Diego,

Calif., Mar. 21-23, 1977, vol. B, AIAA, 1977, pp. 25-37.

15. M. S. Hirschbein and M. I. Young, "Dynamics and Control of Large Horiztont-

al Axis Wind Turbines," Proceedings of the International Association of

Science and Technology for Development, International Symposium on Alter-

native Energy Sources and Technology, Montreal, Canada, May 1980.

16. M. S. Hirschbein, "Dynamics and Control of Large Horizontal-Axis Wind Tur-
bines," Ph.D. Dissertation, Department of Mechanical and Aerospace Engi-

neering, University of Delaware, Newark, Delaware, June 1979.

17. Young, M. I., "A Simplified Theory of Hingeless Rotors with Application to

Tandem Helicopters," American Helicopter Society Annual Forum, Washington,

D.C., May 1962.

18. Chopra, I. and Dugundji, J., "Nonlinear Dynamic Response of a Wind Turbine

Rotor under Gravitational Loading," AIAA J. 16 (18), pp. 773-776 (1978).

19. Hohenemser, K. H. and Yin, Sheng-Kuang, "Some Applications of Multiblade

Coordinates," J. Am. Helicopter Soc., 17 (3), pp. 3-12 (1972).

19



Column i 2 3 4 5

Mode Exponential Damped Freq. Ratio Uncoupled Dominant Motion
Number Decay Rate Natural (_= 2.44 rad./sec.) Natural

(-_n) Freq. Freq.

1 -0.135 35.3 14.5 13.2 Tower Pitching

(2rid Bending
Mode)

2 -.147 37.8 15.5 13.2 Tower Roiling
(n2-_.dBending
Mode)

3 -.119 22.5 9.22 5.93 Yawing Motion
4 -1.14 19.8 8.11 4.20 Symmetric

Chordwise Blade
Motion

5 -.042 12.6 5.16 5.20 Cyclic Chordwise
Blade Motion

_y+l)
6 -1.31 8.28 3.39 3.50 Cyclic Flapping

(_B + l)
7 -.045 7.85 3.22 3.20 Cyclic Chordwise

Blade Motion

(_y - l)
8 -1.16 6.38 2.61 2.50 Symmetric

Flapping
9 -1.21 3.39 1.39 1.50 Cyclic Flapping

(_8 - l)
10 -.143 3.91 1.60 1.35 Lateral Tower

Motion

(SL%!Bending
Mode)

ii -.275 3.70 1.52 1.35 Long. Tower
Motion

(i_ Bending
Mode)

12 -.186 3.31 1.36 1.53 Rotor Rotation

DynamicDescriptionof theReferenceWindTurbineat the RatedWindSpeed
(36ft./sac.)

Table 1



Wind 24 ft./sec. 30 ft./sec. 41 ft./sec. 52 ft./sec. 60 ft./sec.

Mode Real Imag. Real Imag. Real Imag. Real Imag. Real Imag.

i -O.135 35.3 -O.135 35.3 -0.135 35.3 -0.136 35.4 -O.138 35.5

2 -.144 37.8 -.146 37.8 -.141 37.8 -.128 37.8 -.105 37.8

3 -.118 22.2 -.118 22.3 -.123 22.4 -.132 22.8 -.143 23.2

4 -1.15 19.8 -1.14 19.8 -1.15 20.0 -1.16 20.4 -1.19 21.1

5 -.056 12.6 -.047 12.6 -.044 12.6 -.048 12.6 -.052 12.6

6 -1.31 8.25 -1.31 8.26 -1.33 8.26 -1.34 8.25 -1.36 8.23

7 -.060 7.84 -.051 7.84 -.055 7.84 -.064 7.82 -.075 7.81

8 -1.16 6.38 -1.16 6.37 -1.17 6.40 -1.18 6.46 -1.19 6.52

9 -1.22 3.37 -1.22 3.38 -1.23 3.38 -1.25 3.36 -1.27 3.33

iO -.132 3.91 -.136 3.91 -.135 3.91 -.131 3.41 -.126 3.91

ii -.282 3.68 -.282 3.69 -.282 3.68 -.281 3.64 -.271 3.61

12 -.189 3.31 -.186 3.31 -.196 3.32 -.220 3.32 -.259 3.34

Eignevalues of the Reference Wind Turbine as Function of Wind Speed

Table 2

No Bending Axis Rotation Rotation = -0.30 Rad

xl07

ft.-lb, k = 7.5 kB=4.0 k =15 kB=2.0 k = 15 kB=12 i = = =rad. Y Y Y iky 15 kB 2.01ky=15 kB 12

Mode Real Imag. Real Imag. Real Imag. Real Imag. Real Im_g.

2 -0.166 37.8 -0.147 37.8 -0.146 37.8 I-0.150 37.8 -0.147 37.8

5 -.108 9.91 -.040 12.6 -.186 12.7 -.112 12.5 -.096 12.7

7 -.019 5.03 -.042 7.85 -.045 7.85 -.152 7.77 -.074 7.78

i0 -.098 3.84 -.136 3.91 -.140 3.91 -.118 3.91 -.139 3.91

ii -.279 3.69 -.371 3.70 -.159 3.66 -.295 3.65 -.158 3.66

The Combined Effects of Blade Stiffness and Rotation of the

Principal Blade Bending Axes - Wind Speed = 36 ft./sec.

Table 3



No Bending Axis Rotation Rotation = -0.30 Rad

xlO 7

ft.-lb. _y= 7.5 kB=4,0 _=15 kB=2.0 ky=15 k_=121k Y=15 k_= 2.0 _=15 kB=12rad.

Mode Real Imag. Real Imag. Real Imag. Real Imag. Real Imag.

2 -0.134 37.8 -0.105 37.8 -0.102 37.8 -0.117 37.8 -0.105 37.8

5 -.049 9.91 -.043 12.6 -.155 12.7 -.182 12.5 -.188 12.6

7 -.060 5.02 -.068 7.81 -.063 7.80 -.228 7.68 -.095 7.69

i0 -.093 3.85 -.114 3.90 -.137 3.90 -.090 3.89 -.136 3.9G

Ii -.280 3.63 -.380 3.48 -.163 3.63 -.176 3.57 -.157 3.63

The Combined Effects of Blade Stiffness and Rotation of the

Principal Blade Bending Axes - Wind Speed = 60 ft./sec.

Table 4

Wind Speed 24 ft./sec. 36 ft./_ec. 60 ft./sec.

Mode Real Imag. Real Imag. Real Imag.

-i.14 0 -i.ii 0 -i. 09 0
3

-.015 0 -.030 0 -.057 0

5 -.092 13.7 -.081 13.7 -.148 14.0

7 -.391 8.13 -.363 8.16 -.659 8.18

Eigenvalues of a Freely Yawing Wind Turbine

(kc3 = O) for Various Wind Speeds

Table 5



_3 0 = 0.i0= _e3

Mode Real Imag. Real Imag.

i -0.135 35.3 -0.135 35.3

2 -.147 37.9 -.146 37.9

3 -.712 1.57 -.812 1.50

4 -1.14 19.8 -1.14 19.8

5 -.087 13.8 -.175 13.8

6 -.678 9.41 -.825 9.46

7 -.418 8.13 -.391 8.09

8 -1.15 6.37 -1.15 6.38

9 -.894 5.67 -1.08 5.69

i0 -.137 3.92 -.137 3.92

Ii -.220 3.68 -.223 3.68

12 -.183 3.32 -.184 3.32

The Effect of a Weak Yawing Restraint

k_3 = 5.0xlO 7 ft.-ib./rad. - Wind Speed = 36 ft./sec."

Table 6

P

Speed 24 ft./sec. 30 ft./sec. 41 ft./see. 52 ft./sec. 60 ft./sec.

Mode Real Imag. Real Imag. Real Imag. Real Imag. Real Imag.

i -0.135 35.3 -0.135 35.3 -0.13_ 35.4 -0.137 35.4 -0.139 35.5

2 -.143 37.9 -.145 37.9 -.140 37.8 -.126 37.8 -.104 37.8

3 -.825 1.51 -.82G 1.51 -.823 1.51 -.829 1.51 -.834 1.51

4 -1.15 19.8 -1.14 19.8 -1.15 20.0 -1.16 20.4 -1.18 21.1

5 -.183 13.7 -.179113.8 -.200 13.8 -.235 13.9 -.280 14.0

6 -.843 9.49 -.833 9.48 -.797 9.52 -.742 9.63 -.675 9.78

7 -.416 8.07 -.402 8.08 -.443 8.10 -.543 8.11 -.660 8.11

8 -1.16 6.38 -1.16 6.38 -1.16 6.40 -1.18 6.46!-1.18 6.52

9 -1.05 5.60 -1.07 5.64 -1.07 5.63 -1.06 5.57 -1.05 5.51

i0 -.124 ! 3.91 -.130 3.91 -.125 3.90 -.115 3.89 -.108 3.89

Ii -.235 3.67 -.232 3.67 -.237 3.67 -.243 3.661 -.243 3.36

12 -.187 3.31 -.188 3.32 -.195 3.32 -.218 3.32 -.250 3.32

The Effect of a Weak Yawing Restraint with Damping at Various Wind Speeds

k_3 = 5.0x107 ft.-ib./rad. - _a3 = 0.I0

Table 7



Wind Speec Tower Freq. Tower Freq. Tower Freq. Tower Freq. ITower Mass
= 36 ft./see. Dec. by 1/2 Inc. by 1/2 Inc. by 1/2 Inc. by i/2 Dee. by 1/2

Long. Only Lat. Only

Mode Real Imag. Real Imag. Real Imag. Real Imag. Real Imag.

l -0.080 17.9 -0.280 52.5 -0.272 52.4 -0.135 35.3 -0.125 32.6

2 +.429 19.7 -.237 56.8 -.146 37.8 -.236 56.6 -.139 32.6

i0 -.012 1.81 -.038 5.62 -.138 3.91 -.038 5.62 -.028 2.65

ii -.139 1.80 -.672 5.241 -.673 5.24 -.291 3.70 -.206 2.67

12 -.302 3.53 -.285 3.44 -.182 3.32 -.280 3.43 -.260 3.60

The Effects of Tower Stiffness and Mass

Table 8

Wind Speed = 24 ft./see. Wind = 36 ft./see. Wind = 60 ft./see.

_o = i0 _ = 2.15 rad./sec. _3o = 0.i0 rad./sec.
(_Bo + i =-_o - I) Side Wind = 20 ft./see.

Mode Real Imag. Real Imag. Real Imag.

1 -0.131 35.3 -0.134 35.3 -0.140 35.5

2 -.146 37.9 -.146 37.9 -.104 37.8

3 -.595 1.75 -.737 1.59 -.833 1.52

4 -1.14 19.6 -1.14 19.7 -1.18 21.1

5 -.188 12.9 -.179 13.5 -.280 14.0

6 -.245 9.40 -.586 9.29 -.677 9.79

7 -.545 7.97 -.464 8.17 -.660 8.12

8 -.739 6.06 -.i01 6.25 -1.19 6.51

9 -.836 5.51 -1.02 5.64 -1.04 5.50

i0 -.132 3.92 -.137 3.92 -.106 3.90

ii -.177 3.62 -.209 3.66 -.245 3.62

12 -.185 3.32 -.183 3.32 -.255 3.32

The Effects of Rotor Speed and Steady Yawing Rate

Table 9
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