1,067 research outputs found

    From molecules to neural morphology: understanding neuroinflammation in autism spectrum condition.

    Get PDF
    Growing evidence points toward a critical role for early (prenatal) atypical neurodevelopmental processes in the aetiology of autism spectrum condition (ASC). One such process that could impact early neural development is inflammation. We review the evidence for atypical expression of molecular markers in the amniotic fluid, serum, cerebrospinal fluid (CSF), and the brain parenchyma that suggest a role for inflammation in the emergence of ASC. This is complemented with a number of neuroimaging and neuropathological studies describing microglial activation. Implications for treatment are discussed.Medical Research Council, Autism Research Trust, William Binks Autism Neuroscience FellowshipThis is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13229-016-0068-

    Radiological Correlates of Raised Intracranial Pressure in Children: A Review.

    Get PDF
    Radiological assessment of the head is a routine part of the management of traumatic brain injury. This assessment can help to determine the requirement for invasive intracranial pressure (ICP) monitoring. The radiological correlates of elevated ICP have been widely studied in adults but far fewer specific pediatric studies have been conducted. There is, however, growing evidence that there are important differences in the radiological presentations of elevated ICP between children and adults; a reflection of the anatomical and physiological differences, as well as a difference in the pathophysiology of brain injury in children. Here in, we review the radiological parameters that correspond with increased ICP in children that have been described in the literature. We then describe the future directions of this work and our recommendations in order to develop non-invasive and radiological markers of raised ICP in children

    Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas.

    Get PDF
    PURPOSE: To use perfusion and magnetic resonance (MR) spectroscopy to compare the diffusion tensor imaging (DTI)-defined invasive and noninvasive regions. Invasion of normal brain is a cardinal feature of glioblastomas (GBM) and a major cause of treatment failure. DTI can identify invasive regions. MATERIALS AND METHODS: In all, 50 GBM patients were imaged preoperatively at 3T with anatomic sequences, DTI, dynamic susceptibility perfusion MR (DSCI), and multivoxel spectroscopy. The DTI and DSCI data were coregistered to the spectroscopy data and regions of interest (ROIs) were made in the invasive (determined by DTI), noninvasive regions, and normal brain. Values of relative cerebral blood volume (rCBV), N-acetyl aspartate (NAA), myoinositol (mI), total choline (Cho), and glutamate + glutamine (Glx) normalized to creatine (Cr) and Cho/NAA were measured at each ROI. RESULTS: Invasive regions showed significant increases in rCBV, suggesting angiogenesis (invasive rCBV 1.64 [95% confidence interval, CI: 1.5-1.76] vs. noninvasive 1.14 [1.09-1.18]; P < 0.001), Cho/Cr (invasive 0.42 [0.38-0.46] vs. noninvasive 0.35 [0.31-0.38]; P = 0.02) and Cho/NAA (invasive 0.54 [0.41-0.68] vs. noninvasive 0.37 [0.29-0.45]; P = < 0.03), suggesting proliferation, and Glx/Cr (invasive 1.54 [1.27-1.82] vs. noninvasive 1.3 [1.13-1.47]; P = 0.028), suggesting glutamate release; and a significantly reduced NAA/Cr (invasive 0.95 [0.85-1.05] vs. noninvasive 1.19 [1.06-1.31]; P = 0.008). The mI/Cr was not different between the three ROIs (invasive 1.2 [0.99-1.41] vs. noninvasive 1.3 [1.14-1.46]; P = 0.68). In the noninvasive regions, the values were not different from normal brain. CONCLUSION: Combining DTI to identify the invasive region with perfusion and spectroscopy, we can identify changes in invasive regions not seen in noninvasive regions.This study was funded from a National Institutes of Health Research Clinician Scientist FellowshipThis is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/jmri.2499

    Thresholds for identifying pathological intracranial pressure in paediatric traumatic brain injury.

    Get PDF
    Intracranial pressure (ICP) monitoring forms an integral part of the management of severe traumatic brain injury (TBI) in children. The prediction of elevated ICP from imaging is important when deciding on whether to implement invasive ICP monitoring for a patient. However, the radiological markers of pathologically elevated ICP have not been specifically validated in paediatric studies. Here in, we describe an objective, non-invasive, quantitative method of stratifying which patients are likely to require invasive monitoring. A retrospective review of patients admitted to Cambridge University Hospital's Paediatric Intensive Care Unit between January 2009 and December 2016 with a TBI requiring invasive neurosurgical monitoring was performed. Radiological biomarkers of TBI (basal cistern volume, ventricular volume, volume of extra-axial haematomas) from CT scans were measured and correlated with epochs of continuous high frequency variables of pressure monitoring around the time of imaging. 38 patients were identified. Basal cistern volume was found to correlate significantly with opening ICP (r = -0.53, p < 0.001). The optimal threshold of basal cistern volume for predicting high ICP ([Formula: see text]20 mmHg) was a relative volume of 0.0055 (sensitivity 79%, specificity 80%). Ventricular volume and extra-axial haematoma volume did not correlate significantly with opening ICP. Our results show that the features of pathologically elevated ICP in children may differ considerably from those validated in adults. The development of quantitative parameters can help to predict which patients would most benefit from invasive neurosurgical monitoring and we present a novel radiological threshold for this.We gratefully acknowledge financial support as follows. Research support: the Medical Research Council (MRC, Grant Nos. G0600986 ID79068 and G1002277 ID98489) and the National Institute for Health Research Biomedical Research Centre (NIHR BRC) Cambridge (Neuroscience Theme; Brain Injury and Repair Theme). Authors’ support: Peter J Hutchinson – NIHR Research Professorship, Academy of Medical Sciences/Health Foundation Senior Surgical Scientist Fellowship, NIHR Global Health Research Group on Neurotrauma, and NIHR Cambridge BRC. Joseph Donnelly is supported by a Woolf Fisher Scholarship. MC- NIHR BRC

    On the brain structure heterogeneity of autism: Parsing out acquisition site effects with significance-weighted principal component analysis.

    Get PDF
    Neuroimaging studies have reported structural and physiological differences that could help understand the causes and development of Autism Spectrum Disorder (ASD). Many of them rely on multisite designs, with the recruitment of larger samples increasing statistical power. However, recent large-scale studies have put some findings into question, considering the results to be strongly dependent on the database used, and demonstrating the substantial heterogeneity within this clinically defined category. One major source of variance may be the acquisition of the data in multiple centres. In this work we analysed the differences found in the multisite, multi-modal neuroimaging database from the UK Medical Research Council Autism Imaging Multicentre Study (MRC AIMS) in terms of both diagnosis and acquisition sites. Since the dissimilarities between sites were higher than between diagnostic groups, we developed a technique called Significance Weighted Principal Component Analysis (SWPCA) to reduce the undesired intensity variance due to acquisition site and to increase the statistical power in detecting group differences. After eliminating site-related variance, statistically significant group differences were found, including Broca's area and the temporo-parietal junction. However, discriminative power was not sufficient to classify diagnostic groups, yielding accuracies results close to random. Our work supports recent claims that ASD is a highly heterogeneous condition that is difficult to globally characterize by neuroimaging, and therefore different (and more homogenous) subgroups should be defined to obtain a deeper understanding of ASD. Hum Brain Mapp 38:1208-1223, 2017. © 2016 Wiley Periodicals, Inc.Contract grant sponsor: UK Medical Research Council AIMS network; Contract grant number: G0400061; Contract grant sponsors: “Vicerrectorado de Relaciones Internacionales de la Universidad de Granada” and CEI BioTic Granada; Contract grant: “Convocatoria de Movilidad Internacional de Estudiantes de Doctorado Curso 2013/2014”; Contract grant sponsor: MINECO/ FEDER; Contract grant numbers: TEC2012-34306 and TEC2015- 64718-R; Contract grant sponsor: Consejeria de Economia, Innovacion, Ciencia y Empleo (Junta de Andalucia, Spain); Contract grant numbers: P09-TIC-4530 and P11-TIC-710

    The microbiota regulates murine inflammatory responses to toxin-induced CNS demyelination but has minimal impact on remyelination.

    Get PDF
    The microbiota is now recognized as a key influence on the host immune response in the central nervous system (CNS). As such, there has been some progress toward therapies that modulate the microbiota with the aim of limiting immune-mediated demyelination, as occurs in multiple sclerosis. However, remyelination-the regeneration of myelin sheaths-also depends upon an immune response, and the effects that such interventions might have on remyelination have not yet been explored. Here, we show that the inflammatory response during CNS remyelination in mice is modulated by antibiotic or probiotic treatment, as well as in germ-free mice. We also explore the effect of these changes on oligodendrocyte progenitor cell differentiation, which is inhibited by antibiotics but unaffected by our other interventions. These results reveal that high combined doses of oral antibiotics impair oligodendrocyte progenitor cell responses during remyelination and further our understanding of how mammalian regeneration relates to the microbiota.This work was supported by grants from UK Multiple Sclerosis Society, The British Trust for the Myelin Project, MedImmune, The Adelson Medical Research Foundation, Wellcome Trust, BBSRC, the Leverhulme Trust and a core support grant from the Wellcome Trust and MRC to the Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute. CEM was supported by grants from the Jean Shanks Foundation and the James Baird Fund, AGF was supported by an ECTRIMS fellowship and OBZ received a BIRAX fellowship

    Continuous Multimodality Monitoring in Children after Traumatic Brain Injury-Preliminary Experience.

    Get PDF
    INTRODUCTION: Multimodality monitoring is regularly employed in adult traumatic brain injury (TBI) patients where it provides physiologic and therapeutic insight into this heterogeneous condition. Pediatric studies are less frequent. METHODS: An analysis of data collected prospectively from 12 pediatric TBI patients admitted to Addenbrooke's Hospital, Pediatric Intensive Care Unit (PICU) between August 2012 and December 2014 was performed. Patients' intracranial pressure (ICP), mean arterial pressure (MAP), and cerebral perfusion pressure (CPP) were monitored continuously using brain monitoring software ICM+®,) Pressure reactivity index (PRx) and 'Optimal CPP' (CPPopt) were calculated. Patient outcome was dichotomized into survivors and non-survivors. RESULTS: At 6 months 8/12 (66%) of the cohort survived the TBI. The median (±IQR) ICP was significantly lower in survivors 13.1±3.2 mm Hg compared to non-survivors 21.6±42.9 mm Hg (p = 0.003). The median time spent with ICP over 20 mm Hg was lower in survivors (9.7+9.8% vs 60.5+67.4% in non-survivors; p = 0.003). Although there was no evidence that CPP was different between survival groups, the time spent with a CPP close (within 10 mm Hg) to the optimal CPP was significantly longer in survivors (90.7±12.6%) compared with non-survivors (70.6±21.8%; p = 0.02). PRx provided significant outcome separation with median PRx in survivors being 0.02±0.19 compared to 0.39±0.62 in non-survivors (p = 0.02). CONCLUSION: Our observations provide evidence that multi-modality monitoring may be useful in pediatric TBI with ICP, deviation of CPP from CPPopt, and PRx correlating with patient outcome.We gratefully acknowledge financial support as follows. Research support: the Medical Research Council (MRC, Grant Nos. G0600986 ID79068 and G1002277 ID98489) and the National Institute for Health Research Biomedical Research Centre (NIHR BRC) Cambridge (Neuroscience Theme; Brain Injury and Repair Theme). Authors’ support: Peter J Hutchinson – NIHR Research Professorship, Academy of Medical Sciences/Health Foundation Senior Surgical Scientist Fellowship and NIHR Cambridge BRC. Joseph Donnelly is supported by a Woolf Fisher Scholarship. MC- NIHR BRC.This is the final version of the article. It first appeared from PLOS via https://doi.org/10.1371/journal.pone.014881
    • …
    corecore