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and Metabolic Changes in the Invasive

Margin of Glioblastomas
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Purpose: To use perfusion and magnetic resonance (MR) spectroscopy to compare the diffusion tensor imaging (DTI)-
defined invasive and noninvasive regions. Invasion of normal brain is a cardinal feature of glioblastomas (GBM) and a
major cause of treatment failure. DTI can identify invasive regions.
Materials and Methods: In all, 50 GBM patients were imaged preoperatively at 3T with anatomic sequences, DTI,
dynamic susceptibility perfusion MR (DSCI), and multivoxel spectroscopy. The DTI and DSCI data were coregistered to
the spectroscopy data and regions of interest (ROIs) were made in the invasive (determined by DTI), noninvasive regions,
and normal brain. Values of relative cerebral blood volume (rCBV), N-acetyl aspartate (NAA), myoinositol (mI), total chol-
ine (Cho), and glutamate 1 glutamine (Glx) normalized to creatine (Cr) and Cho/NAA were measured at each ROI.
Results: Invasive regions showed significant increases in rCBV, suggesting angiogenesis (invasive rCBV 1.64 [95% confi-
dence interval, CI: 1.5–1.76] vs. noninvasive 1.14 [1.09–1.18]; P< 0.001), Cho/Cr (invasive 0.42 [0.38–0.46] vs. noninvasive
0.35 [0.31–0.38]; P 5 0.02) and Cho/NAA (invasive 0.54 [0.41–0.68] vs. noninvasive 0.37 [0.29–0.45]; P 5< 0.03), sug-
gesting proliferation, and Glx/Cr (invasive 1.54 [1.27–1.82] vs. noninvasive 1.3 [1.13–1.47]; P 5 0.028), suggesting gluta-
mate release; and a significantly reduced NAA/Cr (invasive 0.95 [0.85–1.05] vs. noninvasive 1.19 [1.06–1.31]; P 5 0.008).
The mI/Cr was not different between the three ROIs (invasive 1.2 [0.99–1.41] vs. noninvasive 1.3 [1.14–1.46]; P 5 0.68).
In the noninvasive regions, the values were not different from normal brain.
Conclusion: Combining DTI to identify the invasive region with perfusion and spectroscopy, we can identify changes in
invasive regions not seen in noninvasive regions.
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Despite our improved knowledge and understanding of

glioblastomas (GBM), they still carry a dismal progno-

sis. Survival can be improved by more aggressive surgical

resections1 and the combination of radiotherapy and chemo-

therapy, yet virtually all patients will die from progressive

disease. This disease progression is usually within the high

dose area of radiotherapy2–5 in an area of tumor invasion.

This invasive margin is a cardinal feature of GBM and is

one of the major causes of treatment failure.6 As the inva-

sive margin cannot be accurately identified with clinical,

anatomical imaging (T1-weighted, T2-weighted, and fluid-

attenuated inversion recovery [FLAIR] imaging),7,8 new

imaging methods are required to delineate it and to facili-

tate study of its biology.

Our understanding of what happens in the invasive

margin is less well developed than for the center of the

tumor. It is known that invading cells have a different phe-

notype and are more motile and less proliferative.9 The

View this article online at wileyonlinelibrary.com. DOI: 10.1002/jmri.24996

Received Feb 20, 2015, Accepted for publication Jun 23, 2015.

*Address reprint requests to: S.J.P., Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Box 167,

Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. E-mail: sjp58@cam.ac.uk

From the 1Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK;
2Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK;

3University Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; and 4Cancer Research UK Cambridge

Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK.

VC 2015 Wiley Periodicals, Inc. 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/77408572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


release of enzymes (such as metalloproteases) breaks down

the extracellular matrix and the release of glutamate (second-

ary to disruption of the glial matrix) destroys glia and neu-

ronal processes to provide space for tumor cells to

invade.10,11 As cell numbers increase the tumor cells become

hypoxic, providing an important trigger for changes both in

brain metabolism and angiogenesis that will lead to further

tumor cell invasion.12 Invasion is therefore a multistage,

multicellular process that cannot be completely studied

using a single method.

As invasion primarily involves white matter tracts,

imaging disruption of the architecture of the white matter

will be vital in identifying tumor invasion. Diffusion tensor

magnetic resonance imaging (DTI) is a technique sensitive

to the ordered diffusion of water along white matter tracts,

and it can detect subtle disruption. Studies have shown that

it can identify changes in white matter on the periphery of

an invasive GBM that are not seen in noninvasive metasta-

ses13,14 or meningiomas,15 suggesting that these changes in

the peritumoral area are due to invasion. Diffusion tensor

tissue signatures can split the tensor information into iso-

tropic diffusion (p: magnitude of diffusion) and anisotropic

diffusion (q: measure of the directionality of diffusion).16

This procedure can differentiate regions of pure tumor

(reduced q and increased p) from invaded white matter

(increased p alone)17 and is more sensitive than conventional

DTI measures such as fractional anisotropy (FA).8,18 Image-

guided biopsies of these regions have confirmed invasive

tumor with a high degree of accuracy in both high-grade

gliomas8 and low-grade gliomas.19 Follow-up studies have

shown that these regions predate the development of con-

trast enhancement at progression, and can predict the time

to tumor progression20 and its pattern.21,22 This provides a

valuable method of identifying the invasive tumor margin.

Dynamic susceptibility contrast perfusion imaging

(DSCI) provides information on the relative cerebral blood

volume (rCBV) that correlates with tumor vascularity23,24 and

cellular proliferation.25 Multivoxel MR spectroscopy (MRS),

or chemical shift imaging (CSI), reveals changes in tissue

metabolism within the invasive region. In this study we aimed

to understand the local environment of GBM by exploring

the perfusion and metabolic changes seen in the DTI-defined

invasive margin of GBMs and compare this to regions defined

as noninvasive by DTI. From our knowledge of the biology of

the invasive margin we would expect that multimodal imaging

methods will show that these DTI-defined invasive regions

will appear similar to the main tumor bulk.

Materials and Methods

Patients Recruited
Fifty patients (mean age 58.2, range 31.4–71.6 years; 33 males, 17

female) were recruited preoperatively for this prospective MRI

study. All patients had imaging appearances of a GBM and histo-

logical confirmation was subsequently obtained. All patients

provided signed informed consent for this study that was approved

by the local Research Ethics Committee.

All patients underwent resection of these tumors using 5-

ALA (5-aminolevulinic) fluorescence guidance with an aim of

resecting the entire contrast-enhancing tumor as defined by the

surgical RANO criteria.26 Postoperative imaging within 72 hours

of surgery showed that this was achieved in 39 patients (78%).

Imaging Studies
All patients were imaged within a week prior to surgery on a 3T

Magnetom Trio MR scanner (Siemens Healthcare, Erlangen, Ger-

many), using a standard 8-channel receive head coil and transmis-

sion on the body coil. Conventional anatomical imaging sequences,

diffusion tensor imaging, DSCI, and 1H MR multivoxel spectro-

scopic imaging (CSI) were performed on all patients. The anatomi-

cal sequences included: an axial precontrast T1-weighted sequence

(relaxation time / echo time [TR/TE]: 500/8.6 msec, number of

excitations [NEX]: 1, slice thickness/interslice gap: 4/1 mm, in-

plane resolution: 0.74 mm, field of view [FOV]: 24 3 24 cm, 4

min 22 sec); an axial FLAIR sequence (TR/TE/TI: 7840/95/2500

msec, NEX: 1, slice thickness/interslice gap: 4/1 mm, in-plane

resolution: 0.7 mm, FOV: 22.4 3 16.8 cm, 4 min 28 sec). Diffu-

sion tensor imaging (DTI) was performed with a single-shot SE-

EPI sequence (TR/TE: 8300/98 msec, slice thickness: 2 mm, no

gap, in-plane resolution: 2 mm, 12 directions, 5 b-values: 350/

650/1000/1300/1600 s/mm2, FOV: 19.2 3 19.2 cm, 9 min 26

sec). DSCI was performed (TR/TE: 1500/30 msec, slice thickness:

5 mm, in-plane resolution: 2 mm, FOV 19.2 3 19.2 cm; 90 vol-

umes acquired, 2 min 21 sec) with 9 mL of gadobutrol (Gadovist

1.0 mmol/mL) followed by a 20-mL saline flush given via a power

injector at a rate of 5 mL per second after the tenth volume. Fol-

lowing contrast injection a postcontrast 3D T1-weighted inversion

recovery sequence was performed (MPRAGE; TR/TE/TI: 2300/

2.98/900 msec, NEX: 1, slice thickness: 1 mm, no gap, in-plane

resolution: 1 mm, FOV: 25.6 3 24.1 cm, 9 min 14 sec). To plan the

subsequent spectroscopy, an axial T2-weighted acquisition was per-

formed (TR/TE: 4840/114 msec, NEX: 1, slice thickness/interslice

gap: 4/1 mm, in-plane resolution: 1 mm, FOV: 22 3 16.5 cm, 1

min 33 sec). 2D multivoxel 1H MRS was performed using the semi-

LASER sequence,27 with (NEX: 3) water suppression (TR/TE: 2000/

35 msec, slice thickness: 20 mm, FOV: 16 3 16 cm, 16 3 16 grid

with Hamming acquisition filter, 8 min 6 sec).

Postprocessing of Imaging Data
All data processing was performed offline. The DTI data were

processed using the FDT toolbox in FSL (FMRIB, Oxford, UK).

For each voxel, the eigenvalues (k1, k2, k3) were calculated and

were used to construct the p and q maps using the methodology

and terminology described previously.16

The DSCI data were processed using NordicICE (Nordic-

NeuroLab, Bergen, Norway) and maps of rCBV were generated

following contrast agent leakage correction.

The MRS data were processed using LC Model.28 All spectra

from the selected voxels were assessed visually for artifacts accord-

ing to the criteria described by Kreis.29 The values of the Cramer–

Rao lower bounds indicated by the program were used to evaluate
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the quality and reliability of the 1H spectra and values greater than

20% were discarded. The metabolites were expressed as a ratio to

creatine to avoid the dilutional effects associated with varying

amounts of peritumoral edema30

Regions of Interest (ROIs)
For each patient the contrast-enhanced T1-weighted sequence,

DTI, and DSCI parametric maps were individually coregistered to

the T2-weighted images used to plan the grid for the MRS for that

patient using the FLIRT toolbox in FSL (affine transformation

with 12 degrees of freedom). For the DTI images the p images

(that had improved anatomical details) were coregistered and the

transformation matrix applied to the q images. Coregistered images

were inspected visually by S.J.P. (with 15 years neuroimaging expe-

rience) to ensure good quality of registration by outlining anatomi-

cal structures (eg, ventricles) and assessing the accuracy. The

registered images were discarded and coregistration repeated if

there were errors of registration greater than 2 mm. This allowed

the DTI, perfusion, spectroscopy, and anatomical information to

be in the same imaging space.

For each of the p and q maps, ROIs were drawn around the

visible abnormality on every slice by two reviewers—a neurosur-

geon with 15 years of advanced imaging experience who was

involved in developing the methodology, and a radiologist with 11

years experience, using ImageJ software (National Institutes of

Health, Bethesda, MD). In a random subsample of 15 patients

two trained readers independently drew the ROIs twice at different

timepoints to determine both the inter- and intrarater agreement.

Statistical Analysis
Three regions of interest were determined based on the spectros-

copy grid, as shown in Fig. 1:

1. Invasive: in the DTI-defined invasive region (ie, within the area

of increased p and outside the area of reduced q regions);

2. Noninvasive: in an area outside of the DTI-defined area (ie,

outside the p abnormality) but in an area similar to the inva-

sive ROI according to anatomical imaging (ie, T2-weighted and

contrast-enhanced T1-weighted areas);

3. Normal white matter: in the white matter of the contralateral hemi-

sphere, avoiding any visible pathology (as assessed by S.J.P.).

ROIs were identified where all of the MRS voxels fitted

within the regions described above to avoid the issue of partial vol-

ume effects. The rCBV was calculated for each of the ROIs as a

ratio to normal white matter taken from the contralateral centrum

semiovale. Spectroscopic measures of N-acetylaspartate (NAA),

myo-inositol (Ins), total choline (Cho) including phosphocholine

and glycerylphosphorylcholine, and glutamate 1 glutamine (Glx)

were expressed as a ratio to the total creatine (including phospho-

creatine) for each ROI. We felt that it is preferable quantifying

metabolites to total creatine (which varies across the tumor) to the

water resonance due to problems with dilution in regions of edem-

atous brain.31 Similarly, the NAA/Cho ratio was determined for

each ROI. All values are quoted as mean with 95% confidence

interval (CI) unless otherwise stated.

Data were analyzed using IBM SPSS v. 21 (Armonk, NY) and

significance was taken at the P< 0.05 level. Differences between the

three groups were explored with analysis of variance (ANOVA), with

post-hoc analysis using the Tukey-Kramer honestly significant differ-

ence (HSD) test. The receiver operator characteristic (ROC) was cal-

culated for each of the parameters to determine which provided the

best predictor of the DTI-invasive regions. This was performed by

taking the values from 129 ROIs (47 invasive, 40 noninvasive, and

42 normal white matter) and used the binary classification system as

invasive or not invasive (which included both the noninvasive and

normal white matter ROIs) based on the DTI data. The agreement

was quantified using two methods: Dice scores, which are a measure

of the extent of overlap between the ROIs, and the edge Hausdorff

distance32 between the ROIs, which is a measure of the maximal dis-

tance between the edges of the ROIs being compared. As the Haus-

dorff distance can be sensitive to outliers, the 95th percentile of the

distance was used instead. Classification of the pattern of invasion

was made according to previously published criteria.22

Results

DTI Studies
Regions of abnormal p and q from the DTI data could be

identified in all patients. Overall, 34 (68%) had a diffuse

invasive pattern, 12 (24%) had a localized pattern, and 4

(8%) were minimally invasive. Thirty datasets were ran-

domly assigned to two independent raters. There was agree-

ment in 27 cases (90%), providing a Cohen’s kappa statistic

of 0.81, suggesting very good interrater agreement for the

classification of the invasive phenotype. A consensus opinion

was used where there was disagreement.

FIGURE 1: An example of the placement of ROIs. The DTI and
DSCI data were coregistered to the T2-weighted sequence
used to plan the spectroscopy grid (shown in white). The p
abnormality (red line) and q (yellow line) is outlined to identify
the invasive margin. Regions of interest were taken from (a)
the invasive region, (b) the noninvasive region, and (c) contra-
lateral normal brain. Measures of rCBV and MRS were made
from each region.

Price et al.: Changes in the Invasive Margin of GBMs

Month 2015 3



Interrater variability of the ROIs showed good agree-

ment between the two raters. There was excellent agreement

for the p regions, with mean Dice scores of 0.86 (SD 0.11)

and the mean 95th centile of the edge Hausdorff distance

was 8.2 mm (SD 4.7 mm). The q region agreement

between the two raters was also good, but was not as robust

as the p region (mean Dice scores 0.76, SD 0.16; mean

95th centile of the edge Hausdorff distance 15.7 mm, SD

9.9 mm). There was excellent intrarater agreement for both

p (mean Dice scores 0.88, SD 0.09; mean 95th centile of

the edge Hausdorff distance 7.0 mm, SD 4.9 mm) and q

ROIs (mean Dice scores 0.85, SD 0.1; mean 95th centile of

the edge Hausdorff distance 8.6 mm, SD 7.3 mm).

Perfusion Imaging
Values of rCBV could be calculated in all 50 patients. The

rCBV was increased in invasive regions (mean 1.64, 95%

CI 1.5–1.78; P< 0.001) compared to the noninvasive

regions (1.14; 95% CI 1.09–1.18) and normal white matter

(1.06, 95% CI 1.02–1.10; P< 0.001). There was no differ-

ence between rCBV values in the noninvasive and normal

white matter regions (P 5 0.36).

MRS
An example of the MR spectra in the ROIs is shown in

Fig. 2. The results for the spectroscopy data are summarized

in Fig. 3. Useable spectroscopic data were obtained in 41

patients (82%), dropping to 35 patients (70%) for Glx.

The NAA/Cr was significantly reduced in invasive

regions (0.95, 95% CI 0.85–1.05) compared to either non-

invasive (1.19, 95% CI 1.06–1.31; P 5 0.008) or normal

white matter (1.26, 95% CI 1.15–1.36; P< 0.001). There

was no difference between noninvasive and normal white

matter (P 5 1.0).

The total choline/creatine (Cho/Cr) ratio was signifi-

cantly increased in the invasive area (0.42, 95% CI 0.38–

0.46) compared to both the noninvasive region (0.35, 95%

CI 0.31–0.38; P 5 0.02) and normal white matter (0.35,

95% CI 0.31–0.39; P 5 0.019). There was no difference

between these two regions (P 5 1.0).

The glutamate 1 glutamine to creatine ratio (Glx/Cr)

was significantly increased in the invasive region (1.54, 95%

CI 1.27–1.82) compared to both the noninvasive region

(1.3, 95% CI 1.13–1.47; P 0.028) and to normal white

matter (1.15, 95% CI 0.99–1.31; P 5 0.034). There was no

difference between the noninvasive and normal regions

(P 5 0.59).

The choline/NAA ratio, a marker of cellular prolifera-

tion,33 was increased in the invasive region (0.54, 95% CI

0.41–0.68) compared to both the noninvasive region (0.37,

95% CI 0.29–0.45; P 5 0.032) and the normal white mat-

ter (0.32, 95% CI 0.25–0.39; P 5 0.004). The latter two

groups did not differ (P 5 0.78)

The myoinositol/creatine (mI/Cr) ratio was not signifi-

cantly different in either the invasive (1.2, 95% CI 0.99–

1.41; P 5 0.35) or the noninvasive regions (1.3, 95% CI

1.14–1.46; P 5 0.68) compared to the normal white matter

(1.37, 95% CI 1.24–1.5).

FIGURE 2: An example of MR spectra from different ROIs in a
glioblastoma patient. a: The invasive region (in black) com-
pared with the normal brain (blue). The invasive region demon-
strates increased Cho and significantly reduced NAA with
increased Glx. b: The noninvasive region (in black) compared
with the normal brain (red). There is no significant differences
between metabolites in these regions.

FIGURE 3: Percentage change from normal white matter.
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Predicting Invasive Regions
The ROC showed that the rCBV data provided a better

predictor of the DTI-defined invasive regions than the spec-

troscopic measures (data shown in Fig. 4). Using a cutoff

for the rCBV of 1.25 provides a predictor with a sensitivity

and specificity of 82% for identifying invasive tumor.

Discussion

Attempts to study the peritumoral region of GBMs, usually

defined as the peripheral nonenhancing or edematous

region, have shown that there is an increase in total choline

and the Cho/NAA ratio with a reduction in total

NAA.31,34–38 Histological studies suggest that total choline

and Cho/NAA increase with the degree of invasion of sur-

rounding brain.36 These changes are not seen in the peritu-

moral region of noninvasive meningiomas and metastases.31

Similarly, areas of increased perfusion have been found in

the peritumoral region of GBMs.39–41 In this study we were

able to improve the characterization of the peritumoral

region using DTI, and have shown that the DTI-defined

invasive region has a different local environment compared

to either noninvasive or normal contralateral brain using

multimodal MRI. Outlining these invasive regions showed

high interrater agreement, suggesting a robust methodology.

There was an increase in rCBV, Cho/Cr, Cho/NAA, and

Glx/Cr, with a decrease in NAA/Cr in the invasive regions.

The noninvasive regions, although showing similar appear-

ances on conventional imaging to the invasive regions, had

a similar local environment to the normal-appearing brain

from the contralateral hemisphere on multimodal MRI.

In this study we defined the invasive region of the

brain based purely on the DTI. Previous studies have justi-

fied this and shown that image-guided biopsies of the DTI-

defined invasive region can indeed identify invasive tumor

with a high degree of accuracy.8,19 A number of studies

have now shown that these DTI-defined invasive regions

also predict the site of tumor progression as defined by the

site where new contrast enhancement develops.19,21,22 Our

imaging methods are only sensitive enough to detect tumor

cells outside of the main contrast-enhancing tumor when

they are present in large numbers. As alluded to previously,

it is clear that the noninvasive region will still contain

tumor cells. As virtually all tumors will recur adjacent to the

resection cavity,2–5 it has been suggested that detecting the

site of likely tumor progression (ie, the area with the largest

number of tumor cells outside the target of surgical resec-

tion) is more important than identifying the true extent of

invasion.5

These findings provide information on the local envi-

ronment of the invasive region that correlates with our

FIGURE 4: The ROC curves for the imaging parameters performance at differentiating invasive region vs. noninvasive (which
includes both the noninvasive and normal ROIs). The curve for rCBV suggests that this may be the best discriminator.
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understanding of the multiple processes that occur during

invasion. As mentioned previously, the invasive cells have a

different phenotype, in that they are less proliferative than

enhancing tumor. The Cho/NAA ratio has been shown in

some studies to correlate well with the proliferation of

tumor cells:33,42 although Cho/NAA increased in the inva-

sive regions in the current study, it was still much lower

than in other studies that looked at the enhancing tumor.43

Others have found choline content to correlate more closely

with cell density than proliferation index.44,45 As the cell

density increases, angiogenesis is stimulated by the resultant

hypoxia, resulting in increased rCBV. The increase in rCBV

appears to be the best measure to identify these invasive

regions and has been suggested as a marker that precedes

the development of contrast-enhanced tumor.41 The release

of enzymes to degrade the extracellular matrix is accompa-

nied by glutamate release in excitotoxic concentrations.10,46

This is consistent with the increase in Glx/Cr in these inva-

sive areas seen in our study and reported by other groups

looking at GBMs.47–49 The net effect of these processes is

the loss of neurons (measured by decrease in NAA).

In our study we failed to identify a significant change

in myoinositol in the invasive region compared to normal

brain. Myoinositol is thought to be involved with astrocytic

integrity and regulation of brain osmosis.50 Astrocytic pro-

liferation is associated with an increase in myoinositol and

has been reported in the peritumoral region.31,47 As the

grade of tumor increases, however, myoinositol levels

decrease, so that in GBMs they are similar to normal

brain.51,52 Our data certainly show a nonsignificant trend of

reduced myoinositol in DTI-defined invasive regions where

previous histological studies have shown extensive invasion

with high glioma cells8 replacing other normal cell popula-

tions (including astrocytes).

The local environment of a tumor has a major influ-

ence on how that tumor will behave and respond to ther-

apy.53 Most imaging studies that aim to predict prognosis

or response to therapy have derived measures from the

contrast-enhancing tumor alone. Recent publications suggest

that studying the nonenhancing component of the tumor

also provides prognostic information.54 Advances in modern

neurosurgery now mean that complete resection of the

contrast-enhancing tumor is achieved more often; in our

series, a complete resection of the contrast-enhancing tumor

was achieved in 78% of cases. The result is that nonenhanc-

ing tumor margin will be the site of progressive tumor.

Studying these regions may be more relevant to prognostica-

tion and response to therapies performed after surgical

treatments.

One major limitation of our work is the difference in

resolution, slice thickness, and gaps between the anatomical

imaging, DTI imaging (2 3 2 3 2 mm voxel size providing

whole brain coverage), DSC imaging (2 3 2 3 5 mm voxel

size providing whole brain coverage), and our single-slice

multivoxel spectroscopic imaging (10 3 10 3 20 mm voxel

size). This will lead to issues with the coregistration and

lead to partial volume errors. The difference in voxel size is

particularly critical for the MRS data and means that the

spectral pattern will be dependent on the relative amount of

tumor to normal brain in these invasive regions. But these

limitations will be the same for each of the three ROIs we

compared for each patient. Our findings would suggest that

in the DTI-defined invasive regions there is a high propor-

tion of tumor cells, whereas in noninvasive regions there is

more normal brain. Other groups have published their expe-

rience of 3D spectroscopy—but even then only managed a

voxel size of 10 3 10 3 10 mm.55 They described changes

in NAA and Cho in normal-appearing white matter sur-

rounding gliomas. This study used a longer echo time (70

msec) and as a result was not able to analyze metabolites

with smaller concentrations (eg, myoinositol and glutama-

te 1 glutamine). Newer sequences providing 3D short echo

spectroscopy have been developed and shown to be repro-

ducible56 but still suffer from poor resolution compared to

DTI and DSCI and long acquisition times that make it dif-

ficult to use for multimodal imaging in this population. It

is likely, however, that these methods will be utilized in the

future.

In conclusion, by using DTI to define the limits of

invasion we see changes in the local environment in invasive

regions that are not seen in noninvasive brain and which fit

with our understanding of glioma invasion.
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