3,904 research outputs found

    The kernel of newform Dedekind sums

    Full text link
    Newform Dedekind sums are a class of crossed homomorphisms that arise from newform Eisenstein series. We initiate a study of the kernel of these newform Dedekind sums. Our results can be loosely described as showing that these kernels are neither "too big" nor "too small." We conclude with an observation about the Galois action on Dedekind sums that allows for significant computational efficiency in the numerical calculation of Dedekind sums.Comment: 8+epsilon pages, 2 figure

    Simple strong glass forming models: mean-field solution with activation

    Full text link
    We introduce simple models, inspired by previous models for froths and covalent glasses, with trivial equilibrium properties but dynamical behaviour characteristic of strong glass forming systems. These models are also a generalization of backgammon or urn models to a non--constant number of particles, where entropic barriers are replaced by energy barriers, allowing for the existence of activated processes. We formulate a mean--field version of the models, which keeps most of the features of the finite dimensional ones, and solve analytically the out--of--equilibrium dynamics in the low temperature regime where activation plays an essential role.Comment: 18 pages, 9 figure

    Logarithmic Corrections for Spin Glasses, Percolation and Lee-Yang Singularities in Six Dimensions

    Full text link
    We study analytically the logarithmic corrections to the critical exponents of the critical behavior of correlation length, susceptibility and specific heat for the temperature and the finite-size scaling behavior, for a generic ϕ3\phi^3 theory at its upper critical dimension (six). We have also computed the leading correction to scaling as a function of the lattice size. We distinguish the obtained formulas to the following special cases: percolation, Lee-Yang (LY) singularities and mm-component spin glasses. We have compared our results for the Ising spin glass case with numerical simulations finding a very good agreement. Finally, and using the results obtained for the Lee-Yang singularities in six dimensions, we have computed the logarithmic corrections to the singular part of the free energy for lattice animals in eight dimensions.Comment: 18 pages. We have extended the computation to lattice animals in eight dimensions. To be published in Journal of Physics

    Study of the phase transition in the 3d Ising spin glass from out of equilibrium numerical simulations

    Full text link
    Using the decay of the out equilibrium spin-spin correlation function we compute the equilibrium Edward-Anderson order parameter in the three dimensional binary Ising spin glass in the spin glass phase. We have checked that the Edward-Anderson order parameter computed from out of equilibrium numerical simulations follows with good precision the critical law as determined in experiments and in numerical studies at equilibrium. We have also studied the dependence of the order parameter with the lattice size. Finally we present a large time study of the scaling of the off-equilibrium fluctuation-dissipation relations.Comment: 14 pages, 7 Postscript figure

    Long distance chiral corrections in B meson amplitudes

    Get PDF
    We discuss the chiral corrections to f_B and B_B with particular emphasis on determining the portion of the correction that arises from long distance physics. For very small pion and kaon masses all of the usual corrections are truly long distance, while for larger masses the long distance portion decreases. These chiral corrections have been used to extrapolate lattice calculations towards the physical region of lighter masses. We show in particular that the chiral extrapolation is better behaved if only the long distance portion of the correction is used.Comment: 14 pages, 4 figure

    System-of-Systems Considerations in the Notional Development of a Metropolitan Aerial Transportation System

    Get PDF
    There are substantial future challenges related to sustaining and improving efficient, cost-effective, and environmentally friendly transportation options for urban regions. Over the past several decades there has been a worldwide trend towards increasing urbanization of society. Accompanying this urbanization are increasing surface transportation infrastructure costs and, despite public infrastructure investments, increasing surface transportation "gridlock." In addition to this global urbanization trend, there has been a substantial increase in concern regarding energy sustainability, fossil fuel emissions, and the potential implications of global climate change. A recently completed study investigated the feasibility of an aviation solution for future urban transportation (refs. 1, 2). Such an aerial transportation system could ideally address some of the above noted concerns related to urbanization, transportation gridlock, and fossil fuel emissions (ref. 3). A metro/regional aerial transportation system could also provide enhanced transportation flexibility to accommodate extraordinary events such as surface (rail/road) transportation network disruptions and emergency/disaster relief responses

    Fluctuation-dissipation relations in plaquette spin systems with multi-stage relaxation

    Full text link
    We study aging dynamics in two non-disordered spin models with multi-spin interactions, following a sudden quench to low temperature. The models are relevant to the physics of supercooled liquids. Their low temperature dynamics resemble those of kinetically constrained models, and obey dynamical scaling, controlled by zero-temperature critical points. Dynamics in both models are thermally activated, resulting in multi-stage relaxation towards equilibrium. We study several two-time correlation and response functions. We find that equilibrium fluctuation-dissipation relations are generically not satisfied during the aging regime, but deviations from them are well described by fluctuation-dissipation ratios, as found numerically in supercooled liquids. These ratios are purely dynamic objects, containing information about the nature of relaxation in the models. They are non-universal, and can even be negative as a result of activated dynamics. Thus, effective temperatures are not well-defined in these models.Comment: 29 pages, 10 fig

    Low T Dynamical Properties of Spin Glasses Smoothly Extrapolate to T=0

    Full text link
    We compare ground state properties of 3D Ising Spin Glasses with Gaussian couplings with results from off-equilibrium numerical simulations at non zero (but low) temperatures. We find that the non-zero temperature properties of the system smoothly connect to the T=0 behavior, confirming the point of view that results established at T=0 typically also give relevant information about the T0T\ne 0 physics of the system.Comment: 14 pages and 4 ps figure
    corecore