Metadata, citation and similar papers at core.a

ded by Elsevier - Publlsher Connector

SCIENCE DIRECT®
PHYSICS LETTERS B

ELSEVIER Physics Letters B 579 (2004) 86-98

www.elsevier.com/locate/physletb

Long distance chiral corrections B 1meson amplitudes

Juan J. Sanz-Cillero , John F. Donoghue , Andreas Ross

@ Departament de Fisica Tedrica, IFIC, Universitat de Valéncia, CSC, Valencia, Spain
b Department of Physics, University of Massachusetts, Amherst, MA 01003, USA
C Institut firr Theoretische Teilchenphysik, Universitét Karlsruhe, Karlsruhe, Germany

Received 13 June 2003; received in revised form 10 October 2003; accepted 28 October 2003
Editor: G.F. Giudice

Abstract

We discuss the chiral corrections f@ and B with particular emphasis on determining the portion of the correction that
arises from long distance physics. For very small pion and kaon masses all of the usual corrections are truly long distance, while
for larger masses the long distance portion decreases. These chiral corrections have been used to extrapolate lattice calculation
towards the physical region of lighter masses. We show in particular that the chiral extrapolation is better behaved if only
the long distance portion of the correction is used. We also display the long distance portions of the infrared enhanced chiral
logarithms that appear in partially quenched chiral perturbation theory.

0 2003 Published by Elsevier B.W@pen access under CC BY license

1. Introduction mesons are the lightest excitations in QCD and the
effective field theory is designed to describe the effects
Lattice calculations ofB meson properties are of long range propagation of these light degrees
presently done with parameters such that the light of freedom. Even in loop diagrams there are long
quark masses are larger than their physical values.distance effects which are described well by the
In order to make predictions that are relevant for effective field theory. However, chiral perturbation
phenomenology, these calculations are extrapolatedtheory is nota good model of physics at short distances
down to lower quark masses. One of the extrapolation and is not valid for large meson masses. If we consider
methods uses some results from chiral perturbation mesons of variable mass, as the masses become
theory, and this appears to produce rather large effectsheavier, less and less of the loop corrections are truly
due to the chiral corrections. A recent summary of long distance.
the field [1] noted that this chiral extrapolation is the The chiral corrections are sometimes used in ways
largest uncertainty (17%) at present in the calculation that hide the separation of long distance and short dis-
of the B meson decay constaffp. tance physics. Consider, for example, the chiral cor-
Chiral perturbation theory is an effective field rection to theB meson decay constant in dimensional
theory involving pions, kaons ang mesons. These regularization [2,3,5]
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where g is the heavy meson coupling to pions. L _
The ellipses denote the kaon and eta contributions

as well as analytic terms in the masses that carry
unknown coefficients which must be fit. We see that

the corrections vanish for massless mesons and grow
continuously with large meson masseghis is the =
opposite of the behavior that one might expect, which
would be to have larger chiral corrections when the
pions are nearly massless. For very large masses of
the “pions”, physically we expect that the loop effects |/ _
must decouple from the observables. The expression L _
of Eq. (1) does not illustrate this decoupling. The : . l

key point is that as the mesons become heavier, most i

of the correction given in Eq. (1) comes from short
Fig. 1. Lattice data points fofg and fp, and fitted curves with

istan hysics, which is not a reliabl rt of th
df_? at'Ce fp Izilstr?S, VS S.” Oh a tﬁ. a.b €pa tdO tt'le quadratic fit (upper solid curve) and with chiral logs fpe= 0.27
errectve 1e eory. Vve will snow tnis in more aetal andg = 0.59 (dashed).

below. This behavior is not a problem in principle.
The free coefficients in the chiral Lagrangian allow
one to compensate for the unwanted behavior andis not a valid consequence of chiral perturbation the-
correctly match the short distance physics of QCD. ory.
However the reliance on Eqg. (1) at large masses can  This presents a problem for lattice calculations.
have a deleterious effect on phenomenology in some The need to include chiral logarithms in extracting
applications. physical results has been persuasively presented by

The way that present lattice extrapolations fif Ryan and Kronfeld [8-10]. However, the analysis that
are performed apply the chiral predictions outside we present below indicates that the lattice has not yet
their region of validity. An example is given in Fig. 1, reached the region where the chiral formulas apply
describing the results of the JLQCD Collaboration [4]. and that the current extrapolation is being driven by

In order to address the issue of the chiral exptrap- “nonsense” physics that comes from the chiral loops
olation, the lattice data was fit with the function of at short distance, which chiral perturbation theory is
Eqg. (1) at large mass and the form is used to extrap- not able to describe. The application of Eq. (1) at
olate the results to small values of the mass. The fact large masses then amounts to a bad model of the
that there appearsto be a large effeetat 0 doesnot  short distance physics. We will argue for the solution
imply that the chiral correction is large here. Indeed, where the short distance physics is removed, yet
inspection of Eq. (1) shows that the chiral log correc- keeping the long distance physics in the region of
tion vanishes at zero mass, so the chiral logarithm is validity of the chiral theory. At small quark masses,
not large at the physical masses. Rather, the big effectour method is just a different regularization of chiral
seen comes from using Eq. (1) at large masses. Sinceperturbation theory, and reproduces the usual chiral
the chiral logs grow at large mass, and appear in this corrections. When applied at large quark masses,
formula with a fixed coefficient, normalizing the func- our formulas must also be considered as a model.
tion at large mass produces a sizable difference whenHowever, it is a relatively innocuous model in that it
compared to smaller masses. Since chiral perturbationmakes no assumptions about short distance physics
theory is not applicable at such large masses, this shift and it produces a small correction since the loop effect

decouples at large mass.
When used to extrapolate the lattice results to the

T physical masses, our results lead to more reasonable

Note that we keep th8 meson mass unchanged, so that when . . .
we refer to large and small meson masses, we are always referring e_St'_mateS of the chiral correctlpns. Our methqu_are
to the masses of the chiral particles—pions, kaons and etas—that Similar to some work on long distance regularization
occur in the loop diagrams. in baryon chiral perturbation theory [12] and on chi-
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ral extrapolations in other processes [13]. In partic-
ular, the JLQCD group has explored the use of the
Adelaide-MIT approach [13] in the extrapolation of
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demonstrate that the large chiral logarithm corrections
which occur at large mass are effects that come from
the short distance portion of loops. With a Wilsonian

the pion decay constant [4]. There is some controversy separation of scale, such effects should not be included

concerning these methods—see [11] for an example.

We attempt to contribute to this important topic by

a fuller discussion of the need for a modified analy-
sis and of the rationale behind the solution of keeping
only the long distance corrections.

2. The separation of long and short distance
physics

Effective field theory is a technique for extracting
the low energy predictions of a theory without explic-
itly involving the high energy degrees of freedom. One
imagines integrating out all the high energy physics,
including the quantum corrections, and keeping the
full field theoretic apparatus for the low energy de-
grees of freedom. In the present application, one is in-

terested in matching the low energy theory, described

by chiral perturbation theory, to the high energy the-
ory, which is QCD solved via lattice simulations. In-

herent in this procedure must be a separation of the
long distance and short distance scales of the theory,L10= L5 +

since the two regimes are treated by different meth-
ods. Let us call this procedure Wilsonian effective field

in the low energy effective field theory.

Let us examine another calculational framework
in order to get a sense of what is experimentally
known about this problem. There are a few chiral
calculations that can equally well be formulated as
dispersion relations, and this gives a direct insight
into the transition from long distance to short distance
in connection with chiral logarithms. Useful in this
regard are the Weinberg and DMO sum rules for
the pion decay constant and for the chiral parameter
Lio[15],

o0

FZ= / ds (pv — pa),
4m3
o
—4Lyo= / ?(pv —pA) (2)
4m2
with
Taam2 (In IZ—E + 1). 3)

Herepy (s) — pa(s) is the difference of the vector and

theory because it was Wilson whose methods empha-axial vector spectral functions, which are measured in
sized the integrating out of degrees of freedom beyond e*e~ annihilation and in tau decay. Since these sum

a given high energy scale [14].

rules are rigorous consequences of QCD, the chiral

The basic problem addressed in this Letter arises logarithms can also be found in dispersive evaluations

because we do not do Wilsonian effective field theory
in practice. In a relativistic theory is it inconvenient to

of the sum rules. Let us see how this can occur. At
lowest order in chiral symmetry, one predicts the low

separate low energy and high energy because one musenergy behavior of the spectral functions

specify in which frame to define the separation scale.
Instead, dimensional regularization is regularly used.
The problem is that dimensional regularization has no
intrinsic scale—it knows nothing about the separation
scale appropriate for an effective field theory of QCD.
So there is a dichotomy in this application of effective
field theory. The scale of QCD is contained only in the
low energy constants in the chiral Lagrangian, while
the loop effects are sensitive to all scaded/e will

2 We should emphasize that this is not a fundamental problem for
chiral perturbation theory in isolation, as any incorrect short distance

1 4m?
= |1-=x
pv () 48712[ .
pa(s) =0.

:|3/2
4)

The threshold behavior of the sum rule integration
will then yield chiral logarithm behavior. Momentarily
halting the upper limit of the integration at some scale

physics in loops can be corrected by adjustment of the unknown
low energy constants. Howeverdbes cause a problem when trying

to match to full solution to QCD such as the lattice which already
includes a solution to the short distance physics.
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Fig. 2. The ALEPH data on th&—A spectral function.

s = A2, one finds

2

A
oo ) i
4872 s 8n2 T ’
4m2
A2
ds 1 () Ami\Y2_ 1 om?
/?m( s ) = Tag2 az
4m?2 (5)

This reproduces the chiral logarithm ib;o and a
portion of the chiral log corrections té;,, with the

remainder coming from tadpole diagrams. We see that

the threshold behavior of the spectral function is the
source of these chiral logs. However, since we know
the full spectral function we can use the data to study
the limits to validity of this approximation.

Now let us look at the full experimental results
for the spectral functions. Using ALEPH data [16] in
our normalization convention, one finds the spectral
function of Fig. 2. An expanded view of the low
energy end is given in Fig. 3, along with the leading
chiral approximation to the spectral function. One sees
that the leading chiral approximation of Eq. (4) is
appropriate right at threshold, although it is modified
relatively quickly.

The corrections to Eq. (4) can be accounted for
at higher orders in the chiral expansion and with
enough terms one would converge to agree with the
low energy end of the spectral function. However,
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Fig. 3. The low energy end of the spectral function. The solid line
is the leading chiral approximation to the spectral function, given in

Eq. (4).

0.00175
0.0015
0.00125
0.001
0.00075
0.0005
0.00025

0.1 0.2 0.3 0.4 0.5 0.6

Vs [GeV]

Fig. 4. The leading chiral approximation to the long distance part of
the integrand for the pion decay constant sum rule, calculated with
pion masses having valuesmaf= 100, 150, 200, 250, 300 MeV.

reveals that this transition cannot be taken to be
higher in energy thas = (700 MeV)?. Beyond this
point, chiral perturbation theory will be useless as
a description of the spectral function and the data
reveals the resonances of QCD as the appropriate short
distance physics. One can then perform a calculation
of Lig or F; by using a chiral approximation for the
low energy end of the spectral function, but then use
the data for the short distance physics. This is a visible
manifestation of the Wilsonian separation of scales.
Given this separation scale, let us look at what
happens to the chiral logs as the meson mass gets

for our purposes the key feature that can be seen inlarger. Let us define the long distance contribution

the data is the transition from long distance physics,
to be treated in chiral perturbation theory, to short
distance physics, which in general must be solved by
other means. An inspection of the spectral function

to the integral of the chiral spectral function up to
A ~ 700 MeV. The lowest order approximation to the
spectral function is shown in Fig. 4 for a series of
meson masses. For small values of the mass there is
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0.0025

a well-defined threshold behavior for the low energy
contribution. As the mass increases, the threshold 0.002
for the dispersive integral of course also increases.
Moreover, one sees that at larger masses there is only ©0-0015
a small portion of the threshold region that contributes
before one enters the region of short distance physics.
The chiral approximation is not a useful one beyonda o.0005
mass of 300 MeV.

0.001

Let us show this more completely by looking at the 0 0.05 0.1 0.15 0.2 0.25 0.3
chiral approximation to the long distance contribution.
For the Weinberg sum rule one has m? [GeV?]
A2 Fig. 5. The chiral approximation (upper curve) of the form
5 1 4m2\ 12 constantt am? + bm?Inm? to the full long distance spectral in-
Fr = / ds m( - n) + - tegral, Eqg. (6) (lower curve).
4m,2T
1
=48n2A2|:(A +8mz)1- A2 0.8
2m?
+61In = ] 0-6
A2(14\1- %) - 202
T 0.2
a2 wd (o md
=48712+48n2 lnﬁ"'l o (6) 0 0.02 0.04 0.06 0.08 0.1 0.12
Here the second line is the complete long distance con- m? [GeV?)

iribution ”S'r‘g Eq. (4). In chiral pertur_batlon theory at Fig. 6. The quality of the chiral approximation to the long distance
one loop, this result would be approximated by & con- jyegral, Eq. (6), as a function of mass. The ordinate displays
stant, a chiral log and a slope term. This chiral approx- the ratio of the real integral to the chiral approximation defined
imation is given in the last line. Tha? term combines by keeping terms up to and including the chiral log$Inm?.

up with the rest of the spectral integral to give an over- The chiral approxi‘matio_n is seen to be e?(cellent at small masses,
all value of the pion decay constant, leaving the chiral including the physical pion mass, but to fail at larger masses.

log and the slope term to express the dependence of

the result on the pion mass. How far are we allowed for the mass dependence at low mass, but it deviates
to trust this dependence? This question is answerabledrastically beyond: ~ 300 MeV. The chiral approxi-

in the present framework because we have calculatedmation continues to grow and to have a rapid variation
the full long distance contribution. In Fig. 5 we dis- with mass at higher values of the mass. However the
play the full long distance contribution and the chiral long distance component of the sum rule disappears.
approximation as a function of mass. Fig. 6 displays The reason for this is clear—the mesons are heavy
the ratio of the long distance integral to its chiral ap- enough that even their threshold effects falls outside
proximation. These have been matched to agree ex-of the long distance regime. An identical conclusion
actly in magnitude and slope at=0. One sees that follows if one studies the chiral logarithm in the o

the agreement is fine at small masses but that the chiralsum rule.

approximation develops a large variation in the region ~ The lessons of the previous exercise are that (1)
where there is no longer any residual true long dis- the data exhibit a transition from the long distance
tance effect. Both of these figures show that the chiral description to short distance that occurs at or before
approximation starts out being a good approximation a scaleA ~ 700 MeV, and (2) the approximation
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consisting of a chiral logarithm and a slope term ing only the long distance portions of the loop inte-
fails to describe the long distance regime for meson grals.

masses beyona ~ 300 MeV. The value of the mass

for which this transition occurs is smaller than many

people would expect, but is readily understood in this 3 A study of the chiral correctionsto fg

case because the physical threshold startsnmati.2.,

s = 4m?2.

Why does one not see this behavior in the usual
application of chiral perturbation theory? In practice
we do not do a Wilsonian separation of scales inside
loop diagrams. With dimensional regularization of
loop integrals all momentum scales are probed and the
dominant contribution (after renormalization) come
from momentum close to the meson mass. As the

The chiral corrections were initially calculated by
Grinstein et al. [2] (see also [3,5-7]). The methods
are standard and we will not reproduce the details.
However we note that, although there are various
Feynman diagrams in the calculation, in the end the
loop calculations involve only one loop integral,

4
meson mass grows, the resulting chiral logarithm |(m) = d k4 3 12 —. (7
appears to grow without bound. While this is not a (2m)* (k= —m< +i€)
problem for chiral perturbation theory in isolation, it The chiral expansion involves unknown parameters

is a problem if one tries to match on to a calculation g the reduced decay constant at zero mags
done in lattice gauge theory. Lattice calculations will znd for the slopes(a1, ap) parameterizing linear

large mass, the short distance behavior of the chiral

loops is large and incorrect (i.e., in disagreement with 1

the data or the lattice calculation). Therefore, in trying IBia = Wfo
X . . o B

to match chiral calculations to lattice work, it is better

to exclude the short distance portions of the chiral « [1+0t1m72T +a2(2m% +m2)
loops and keep only the long distance effects. "
The dispersive analysis has been convenient for 1+ 3g2

identifying an appropriate separation scale. How-
ever, not all field theory calculations have dispersive
analogs so we cannot always use this technique to % <§|(mn) +lmg) + }l(mn))] 8)
implement the long distance corrections. In particu- 2 6

lar, we do not know how to formulate the chiral cal-
culations of fg into a useful dispersive framework.
However, the results above can be mimicked by use 1
of field theory techniques with a momentum space I, = \/Wfo
cutoff. The method of using a cutoff to extract the *

2
AFg

and

long distance predictions has already been developed % [1+a 2m2 — m2) + an(2m2 + m2
and applied in SU(3) baryon chiral perturbation the- 12 =) + (2 +mz)
ory [12], where it was useful for understanding the 1+ 3g2

kaon loop effects. In the next section, we will explore (2| (mg) + g' (m")ﬂ’ 9)
the same issue of separation of long and short dis-

tance in a field theoretic context. This will lead us to
the use of field theoretic cutoff techniques as a regu-
larization scheme in chiral perturbation theory. Such
a regularization reproduces the usual results for small
values of the pion mass. However, with an appropriate
choice of the cutoff, one can also use this technique 3 |n our numerical work, we will usg = 0.59.

to implement the desired separation of scales, keep- “ We use the normalization such thet = 0.0924 GeV.

2
4F;

where g is the coupling of heavy mesons to piéns
andFy is the pseudo-Goldstone meson decay constant
in the chiral limit* Of course, the integral still needs
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m [GeV]

Fig. 7. Integralsl m, A) with A = 500 MeV and|9"(m) with
u =500 MeV (dashed).

to be regularized. In dimensional regularization, one
absorbs the 1/(d 4) divergences into the slopes and
finds the residual integral

wherep is the arbitrary mass parameter that enters in
dimensional regularization. The physical results do not
depend oru, as it can be absorbed into a shift in the
unknown slope coefficients.

Let us explore the loop integral and study the long-
distance part. In order to do this, we use a cutoff
defined in the rest frame of the meson in order to
remove the short distance component. Specifically, we
use a dipole cutoff yielding

1 m?
Idr(m) = @[m2+m2|n ﬁ (10)

l(m, A)
d*k 1
)4 (k2 —m2+ie)(k?2 — A2 +i€)?’

(11)
In related contexts, other forms of cutoffs have been
studied [12,13]—qualitatively similar results are found
with other forms, although the parametgémwill have
different meanings in each case. We employ a finite
value for the cutoff of order the size of th® meson.
The integral may be calculated and has the form

4

=iA

l(m, A)
A4 1 m? m?
= - In—|. (12
167t2|: mZ A2 T uZ_ A2)2 AZ} (12)
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More illuminatingly, this result is shown in Fig. 7.

In this figure we compare the dimensionally regular-
ized result to the long distance portion, defined by
Eq. (12).

The long distance component is seen to have
several reassuring features in the cutoff regularization.
Itis largest when the meson is massless, as one would
expect. It is small when the mass is big and exhibits
decoupling, vanishing as the mass goes to infinity.
It smoothly interpolates between these limits. When
comparing it to the dimensionally regularized result,
one sees a shift in the intercept at zero mass—this is
not surprising because the regularization corresponds
to removing the value whem = 0. One also notices
that, aside from this shift, both forms have the same
logarithmic behavior nean = 0. The small curvature
noted at the smallest mass values is the nonlinear
behavior due to the chiral log facter? In m2. Without
this term the result would be able to be Taylor
expanded about: =0, with the first term being a
linear slope inn®—the nonlinear behavior is the result
of the logarithm.

We also see that the chiral log by itself grows large
quickly and has a large curvature at large masses in
dimensional regularization. This effect is not mirrored
in the long distance component, so that it is clear that
this behavior comes from the short distance portion
of the integral. This is not surprising. In dimensional
regularization, there is no scale within the integration
aside from the particle’s mass, so that the whole
integral scales witth ~ m. These short distance effects
are ones which are not reliably calculated by the
effective field theory.

The above calculation has been a diagnosis of
the problem. We are then faced with the question
of what to do in order to better perform the chiral
extrapolation. It is clear that the only perfect solution
is that the lattice effort should continue until they
can deal with quark masses as small as observed in
nature. However, this is a long way off in the future
and we are interested in the best possible estimate of
B meson properties at the present time. To extrapolate
with an analytic polynomial is to ignore the known
existence of chiral logs. To use the formula of Eq. (1)
at large mass is to use a very bad model of the short
distance physics. A better solution is to use a model
extrapolation that includes all of the chiral logs at long
distance, but which makes no assumption about short
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distance physic3.We discuss how such a model can
be exactly equivalent to chiral perturbation theory at
small mass, yet decouple at large mass.

4. Long distanceregularization of the chiral
calculation

At small quark masses, the cutoff treatment of the
integral can be promoted to a regularization of chiral
perturbation theory. This has been studied in the con-
text of baryon chiral perturbation theory in Ref. [12],
where it was called long distance regularization. The
use of a cutoff is clearly more painful calculationally
than the usual dimensional regularization, but when

the masses are small it reproduces the usual one-loop

chiral expansion for matrix elements such as we are
studying.
In order to regularize the calculation using the cut-

off, the divergent pieces are separated in the Feynman /s, =

integral. The resultis

A2
A% —m?In —2] +1"m, A),

g (13)
wherel™"(m, A) is finite in the limit A — oco. This
residual integral has the form

|ren(m’A)
— |d.r.(m)
4 1 |:_ m? 3 m*(m? — 2A2) n m_21|
1672 m?—A%2  (m?2—A2%2  A?Z]
(14)

We see that there are potentially divergent contri-
butions proportional ted? and InA2. However, since
the cutoff regularization scheme is consistent with chi-
ral symmetry, these have exactly the right structure to
be absorbed into the chiral parameters. In particular,
the renormalization is

, - 8.1+43g?
ren__ = 2

0 =/o 3f°64n2F5 ’

Lo gy 51T 32 A2
! 664712F£ w?

5 The “smooth matching” procedure of Ref. [5] is another
attempt to apply the chiral results only in their region of validity.
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111+ 3¢? . A?
1864m2F7  pu?

ren __

(15)

After renormalization, we can express the chiral am-
plitudes in terms of these parameters plus the logarith-
mic contribution in the residual integrél® (m, A),
providing the renormalized observables

1 ]Fren
Mmp 0

X |:1 + a;enmJZT + agen(Zm% + mjzr)

fBu,d =

(glren(mn, A) +1"mg, A)

1+ 3g?
- ——
4F¢
1 ren

and
1

A/ M By

X |:1 + o2 (2m% — m2) + oS (2m% +m2)

rren
fo

1+ 3g?
2
4F7

x <2| Nk, A) + g|"9”(m,7, A))}.

3
17)
Since at small mass, the residual intedréf(m, A)
tends tol 9" (m), the usual chiral expansion is recov-
ered atn? < A2. At small mass, the cutoff is just an-
other way to regularize the calculation.

5. Partially quenched chiral logarithms

The results of the previous section can be sim-
ply extended to the case of partially quenched chi-
ral perturbation theory (PQChPTh) [18]. Sharpe and
Zhang [3] have calculated the chiral logs in that the-
ory and we will give the modification that occurs when
using long distance regularization.

In the partially quenched theory, one differentiates
between valence quark€/) and sea quarkss).
The valence quarks live in the external hadrons and
one adds a set of commuting pseudo-quarks with
the same mass as the valence quarks to cancel off
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the fermion determinant of the valence quarks. The
sea quarks then provide the fermion determinant, and
in general they may have different masses from the
valence quarks. Real QCD is obtained when =

ms. The propagators for flavor nonsinglet mesons
are the same as in full QCD. However, in the flavor
diagonal channel the propagators are modified by
sea effects which involve the mixing with the heavy
singlet meson, thes”. In this case, one has for a
flavor diagonal meson propagator (in the notation of
Ref. [19])

G(p) = 1 m§+ o p?
D)= ME, T R Mg, )2
p 4% p 2%
1
I (N /3 (m2 2 /(02 + M2
=+ ( f/ )(mo—i-OchP )/ (p*+ SS)

(18)
where mg is related to they’ mass andue to its
propagator. However, in the limit that the sea meson
mass Mss is small compared to the’ mass, the
propagator simplifies to

1

W)

1
2 2
pe+ My,

2 2
Mg —Myy
2 2 \2°
(p +Mvv) (

G(p)= (1 - N
19)
The first propagator has been modified by the removal
of the flavor singlet meson. The double propagator
vanishes in the QCD limit—it is the source of the
enhanced chiral logarithms that occur in PQChPTh.

The chiral loop correction now includes a new
Feymann integral, corresponding to the double pole.
When using our regularization this becomes

J(mz, A)
. d*k 1
=iAt
@2m)4 (k2 —m2+ie)2(k2 — A2 +i€)?
2
A 2 m2 4+ A? m?

= — n—
1672 _A2)2 (m2—A2)3 A2

(6 )
(20)

As A — oo or small meson mass we recover the
dimensional regularization result for this integral

J(mz, A— oo)

=J(m?—0,4)—> — (21)
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m [GeV]

Fig. 8. IntegralsJ(m, A) with A = 500 MeV andJ®"(m) with
=500 MeV (dashed).

while for large mass this rapidly vanishes
A4

__= A
1672 m4(

Because of the double pole, this integral is more in-
frared sensitive than the usual chiral loop integral.
However, correspondingly the integral is less sensitive
to UV effects as the mass becomes large. In Fig. 8 we
show the integrall using a cutoff atA = 500 MeV
compared to the dimensionally regularized form with
u = A. As expected, the two forms agree exactly at
small mass, and disagree at larger masses, although
the disagreement is not as large as was seen for the
previous integral. We also see that the dimensionally
regularized form does not have the same rapid varia-
tion at large mass that was seen in the integral

Let us carry out the renormalization in the same
way as in the last section. One defines a renormalized
integral J”*" by subtracting a constant term which
goes into the renormalization of the slope parameters.
Specifically,

m2

J(m2—>oo,A)—> nﬁ_

2). (22)

Jren(m’A)
1 u?
=Jm,A)— ——=(2+Ih—
(m. 4) 16712( + A2)
1 m?2

One then finds that the result of Sharpe and Zhang
[3] is reproduced for the limin? <« A2. For larger
masses, the removal of the short distance component
leads to the modification using the integrdf&(m, A)
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andJ™®"(m, A). For Ny degenerate flavors

1
fy = fo
1% g
14 3g2
X |:1+cme%,V +C§Qis+ 2g
4F¢
Ny 1
1S yren N [ren
X( 5 (mys) —2Nf (myv)

n 1
2Nf

X Jren(va, A))]

(m%/v - m?ss)

(24)
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Fig. 9. fp/mp as a function ofn? fitted to the lattice data points
for A =400, 600, 1000 MeV and for the result from dimensional
regularization (dashed).

The result has some interesting features. One sees that

the enhanced chiral logs persist in this regularization
even whenmgg is large. This is because the factor
m2¢J (myy) blows up in the limit thatnyy — 0 at
fixed mgs. The infrared sensitive double pole persists
in this regularization since the propagating particle
is a valence meson. It appears that the large,
andmyg effects decouple, but the largess effects

do not unlessnyy is also large. However, this is a
consequence of the approximation thags is small
compared to the;’ mass. As can be seen from the
propagator in Eq. (18), the sea effects obey a form of
decoupling at large mass. #ss is larger than they

mass then the sea quark masses become irrelevant and

the propagator becomes that of fully quenched chiral
perturbation theory. It is only in the region where the
sea masses are small compared tothmass that the
PQChPTh results are applicable.

The partially quenched results provide an addi-
tional method for exploring the properties of the chiral
logarithmic corrections.

6. Thechiral extrapolation of fp

If we are going to use any meson loop calculation
at larger masses in order to match to the lattice,

0.2

0.19

I [GeV]
o

1.5 2 2.5 3
A [GeV]

Fig. 10. fp at the physical pion mass as a function/f

supplies the correct short distance physics, described
there through terms analytic im? (linear behavior,
quadratic...). In adtlon, at smaller masses, our
formulas naturally include the chiral logarithms in the
regions where they should be valid. This motivates us
to use the long distance loop calculation in the chiral
extrapolation forB meson properties.

Let us first fit our expression to a caricature of the
lattice data by matching the data at two points. Such a
linear extrapolation is appropriate for one-loop since
we have only the constants and linear counterterms
in the one-loop expression. This fit is demonstrated

then all treatments are model dependent. We havein Fig. 9, for various values ofA. We see that the
argued above that the use of chiral logs at these scalesextrapolation is smoother and that there is no large

amounts to a bad model because it builds in very large
and spurious short distance effects. Our calculation

above removes the short distance effects in the one-

loop diagrams. This is then a reasonable formalism to
apply to the lattice calculation. The lattice calculation

curvature induced at large mass.

There remains dependence of the extrapolated value
on the parameten. This is shown in Fig. 10. In the
rangeA = 400 MeV — 1000 MeV, this amounts to
a 5% uncertainty in the extrapolated value. The for-
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mula used in previous extrapolations corresponds to and a separation scale. However, at large masses,

A — oo. It is clear that the loop contributions that
arise beyond the scale of = 1000 MeV are of too
short distance to be physically relevant for the effec-
tive field theory—there is no reliable chiral physics
beyond this scale.

This extrapolation can be systematically improved.
Most favorably would be the situation in which the lat-

the dimensional regularization result is really more
of a model as it introduces large and unphysical
short distance physics. Our procedure is the “anti-
model” because it removes most of that physics. The
residual dependence ot comes from the ambiguity

concerning how much of the short distance physics
to remove. The value oft from the lattice results,

tice data can be calculated at smaller mass squared—introduced through the dipole cutoff, parameterizes

eventually no extrapolation would be needed. Even the amount of short distance physics included in the

if the improved data goes only part of the distance loop. However, this dependence can itself be adjusted

to the physical masses, it would remove some of the by using the coefficients of the chiral Lagrangian.

model dependence of the result. The extrapolation Despite the decoupling of the loop at large mass, we

needed would be smaller and the residdabepen- retain all of the correct chiral behavior in the limit of

dence would be smaller. Another way that improve- small quark mass.

ment possibly may be made is with increased precision

even at larger masses. As shown by Eq. (14) above,

the extrapolations for differentt values differ only

at orderm®/A2. If one includes an extr®(m?) in

the one-loop chiral calculation, fitting to a quadratic All of the preceding formalism can also be applied

expression, then the extrapolations will be in closer to the chiral extrapolation of th&z parameter for

agreement at this chiral order. Note however that the B—B mixing. We have reproduced the calculations

low mass region is still being extrapolated by a one- of Refs. [2,3] using throughout the method of long

loop chiral formula—this procedure is not equivalent distance regularization. As above, only the intedfi#l

to a two-loop result in chiral perturbation theory. is needed in the final answer. The chiral formulas after
As the lattice data reaches higher precision and/or renormalization of the parameters are

smaller quark masses, it may be that the range of

for whlch a good fit is obt_aln(_ad may shrink. Wh|le we pBp = B(rJen[1+ B2 + ﬁ&e”(Zmﬁ + mJZT)

are treatingA as a regularization parameter, itis meant

7. Applicationto By

as a rough parameterization of a physical effect—the 1—3g2

transition from long distance to short distance in the T TaF?

loop calculation. Therefore when using a fit to a given ¢

order in the chiral expansion, the lattice data may x (|ren(mn,A) + }Ire”(m,],A)ﬂ,
only be describable witm within some range near 3

(25)

the scale of this physical effect. Indeed, already the
B, = B{f”[l + BN (2m +m2) + BN (2mf + m?)

present data is a poor fit fot — oco. Of course if one
allows arbitrary orders in the chiral expansion, with
free parameters at each order, it is always possible to
correct the loop effect for any incorrect short distance
behavior by adjusting the parameters. However, when
using the one-loop integral with precise data it may in the same notation as before. Here the new chiral
not be possible to obtain good fits for large values constantsBp, 81, 82 describe the intercept and slope

1—3g2
- 2
3F;

1""m,., A)i|, (26)

of A without introducingseveral new parameters at
higher orders in the masses. In contrast, simpler fits
with fewer parameters may be obtained wittwithin
some optimal range.

Our procedure might be criticized as being a
model, due to the choice of a separation function

of the chiral expansion. At small masses the usual
dimensional regularization results of Refs. [2,3] are
recovered in the limit of smak:/A, as is seen using
Eq. (14).

The chiral corrections foBg are proportional to
1 — 3g2, while in the case offz the corrections
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contain the factor & 3g2. This modification makes  However, experience indicates that this form is not of
an important change in the result. For the coupling great importance in the physical applications. What is
0.59 that is favored by recent measurements [17] and important is that all such schemes exclude the short
supported by recent lattice calculations and theoretical distance portions of loop diagrams. Alternatively, if
predictions [17], the factor + 3g2 almost vanishes.  the lattice calculation can be extended into the region
In this case, the one-loop chiral corrections are tiny where the chiral formulas are valid, then the smooth
whether one employs the standard scheme or our longmatching procedure of [5] also has the feature of
distance regularization methods. (See also [20] for a not depending on the short distance physics in chiral
discussion of this effect.) For this reason, we do not loops.
display the numerical effect of the chiral extrapolation There is still some model dependence that is visible
of Bg. Use of a significantly smaller value of the inthe variation of the results an. Thisis presently in-
couplingg would lead to measurable effect in tiBg evitable because the matching between long and short
extrapolation. Similarly, if the coupling was larger, the distances cannot be achieved to great accuracy. This
chiral logarithm effects could lead to an increase in variation, and also the difference between the cutoff
the value ofBg, rather than a decrease such as we saw schemes and dimensional regularization, are perhaps
for f3. disconcerting. Ultimately, physics does not depend on
the regularization scheme. One might be tempted to
assign an uncertainty to the calculation that is given
8. Conclusions by the spread in the scheme dependence, ranging from
A =0 for no chiral logarithms up tol = oo (which
The chiral extrapolation of lattice calculations is a corresponds to using the dimensionally regularized
tricky subject because the regions of validity of chiral formulas at large meson masses). However, this is too
loops and of present lattice simulations do not overlap extreme. It is certain that the physics that comes from
significantly. In Section 2 we have provided a data- chiral loop diagrams beyond 1 GeV is incorrect. There
based exploration of the limits of validity of the chi- is no reason to consider this spurious short distance
ral formulation of loop diagrams. For meson masses physics as a measure of the uncertainty in the chiral
that are larger than 300 MeV, the loops start to enter extrapolation. Similarly there is no reason to doubt
the short distance region and are no longer well repre- the existence of the chiral corrections below a scale
sented by the effective field theory. Lattice simulations of 400 MeV. Therefore at the least the range of un-
get most of their signal for larger masses than this. In certainty can be reduced to the spread in values for
the long run, the only satisfactory treatment requires A =400— 1000 MeV. The uncertainty in an extrap-
the lattice to be applied at the physical quark masses. olation for f is about 5% when the cutoff is con-
In the meantime one must attempt to provide the best strained to this range. FaBp the uncertainty in the
possible treatment for the extrapolation. All such treat- chiral extrapolation is negligible fog = 0.59. We
ments are model dependent since they must be appliedwould recommend that our method only be applied for
outside the range of validity of chiral loops. values in this range. As lattice simulations are applied
Our method to connect them is to use just the long to smaller masses, this range in the cutoff may need
distance components of a one-loop calculation. This to be narrowed in order to agree with the lattice data.
includes the chiral logarithm in the region where it is This corresponds to a more accurate matching of the
valid. It has the advantage that it removes the large andlong and short distance portions of the calculation.
unphysical short distance effects that caused problems  The chiral corrections have the effect of producing
in previous extrapolations. a slight decrease in the extrapolated valuegsofvhen
The use of long distance regularization has been compared to an extrapolation which does not include
applied to baryon properties by Donoghue, Holstein chiral effects. This is the effect of the nonanalytic
and Borasoy [12]. Related regularization schemes behavior of the chiral logarithm at long distance. Our
have been applied to other chiral extrapolations by the estimates suggest that the decrease due to the chiral
Adelaide group [13]. The regularization schemes can log puts the chirally corrected result aB@5+ 0.025
differ in details such as the form of the cutoff function. of the uncorrected extrapolation fgg. We hope that
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our method will be applied in future extrapolations of
lattice data.
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