17 research outputs found

    BiFET: sequencing Bias-free transcription factor Footprint Enrichment Test.

    Get PDF
    Transcription factor (TF) footprinting uncovers putative protein-DNA binding via combined analyses of chromatin accessibility patterns and their underlying TF sequence motifs. TF footprints are frequently used to identify TFs that regulate activities of cell/condition-specific genomic regions (target loci) in comparison to control regions (background loci) using standard enrichment tests. However, there is a strong association between the chromatin accessibility level and the GC content of a locus and the number and types of TF footprints that can be detected at this site. Traditional enrichment tests (e.g. hypergeometric) do not account for this bias and inflate false positive associations. Therefore, we developed a novel post-processing method, Bias-free Footprint Enrichment Test (BiFET), that corrects for the biases arising from the differences in chromatin accessibility levels and GC contents between target and background loci in footprint enrichment analyses. We applied BiFET on TF footprint calls obtained from EndoC-βH1 ATAC-seq samples using three different algorithms (CENTIPEDE, HINT-BC and PIQ) and showed BiFET\u27s ability to increase power and reduce false positive rate when compared to hypergeometric test. Furthermore, we used BiFET to study TF footprints from human PBMC and pancreatic islet ATAC-seq samples to show its utility to identify putative TFs associated with cell-type-specific loci

    A pan-cancer analysis of driver gene mutations, DNA methylation and gene expressions reveals that chromatin remodeling is a major mechanism inducing global changes in cancer epigenomes.

    Get PDF
    BACKGROUND: Recent large-scale cancer sequencing studies have discovered many novel cancer driver genes (CDGs) in human cancers. Some studies also suggest that CDG mutations contribute to cancer-associated epigenomic and transcriptomic alterations across many cancer types. Here we aim to improve our understanding of the connections between CDG mutations and altered cancer cell epigenomes and transcriptomes on pan-cancer level and how these connections contribute to the known association between epigenome and transcriptome. METHOD: Using multi-omics data including somatic mutation, DNA methylation, and gene expression data of 20 cancer types from The Cancer Genome Atlas (TCGA) project, we conducted a pan-cancer analysis to identify CDGs, when mutated, have strong associations with genome-wide methylation or expression changes across cancer types, which we refer as methylation driver genes (MDGs) or expression driver genes (EDGs), respectively. RESULTS: We identified 32 MDGs, among which, eight are known chromatin modification or remodeling genes. Many of the remaining 24 MDGs are connected to chromatin regulators through either regulating their transcription or physically interacting with them as potential co-factors. We identified 29 EDGs, 26 of which are also MDGs. Further investigation on target genes\u27 promoters methylation and expression alteration patterns of these 26 overlapping driver genes shows that hyper-methylation of target genes\u27 promoters are significantly associated with down-regulation of the same target genes and hypo-methylation of target genes\u27 promoters are significantly associated with up-regulation of the same target genes. CONCLUSION: This finding suggests a pivotal role for genetically driven changes in chromatin remodeling in shaping DNA methylation and gene expression patterns during tumor development

    Identifying cancer driver genes in tumor genome sequencing studies

    Get PDF
    Motivation: Major tumor sequencing projects have been conducted in the past few years to identify genes that contain ‘driver’ somatic mutations in tumor samples. These genes have been defined as those for which the non-silent mutation rate is significantly greater than a background mutation rate estimated from silent mutations. Several methods have been used for estimating the background mutation rate

    Transcriptional activation of Jun and Fos members of the AP-1 complex is a conserved signature of immune aging that contributes to inflammaging.

    Get PDF
    Diverse mouse strains have different health and life spans, mimicking the diversity among humans. To capture conserved aging signatures, we studied long-lived C57BL/6J and short-lived NZO/HILtJ mouse strains by profiling transcriptomes and epigenomes of immune cells from peripheral blood and the spleen from young and old mice. Transcriptional activation of the AP-1 transcription factor complex, particularly Fos, Junb, and Jun genes, was the most significant and conserved aging signature across tissues and strains. ATAC-seq data analyses showed that the chromatin around these genes was more accessible with age and there were significantly more binding sites for these TFs with age across all studied tissues, targeting pro-inflammatory molecules including Il6. Age-related increases in binding sites of JUN and FOS factors were also conserved in human peripheral blood ATAC-seq data. Single-cell RNA-seq data from the mouse aging cell atlas Tabula Muris Senis showed that the expression of these genes increased with age in B, T, NK cells, and macrophages, with macrophages from old mice expressing these molecules more abundantly than other cells. Functional data showed that upon myeloid cell activation via poly(I:C), the levels of JUN protein and its binding activity increased more significantly in spleen cells from old compared to young mice. In addition, upon activation, old cells produced more IL6 compared to young cells. In sum, we showed that the aging-related transcriptional activation of Jun and Fos family members in AP-1 complex is conserved across immune tissues and long- and short-living mouse strains, possibly contributing to increased inflammation with age

    Estimating the order of mutations during tumorigenesis from tumor genome sequencing data

    Full text link

    The MiAge Calculator: a DNA methylation-based mitotic age calculator of human tissue types

    No full text
    <p>Cell division is important in human aging and cancer. The estimation of the number of cell divisions (mitotic age) of a given tissue type in individuals is of great interest as it allows not only the study of biological aging (using a new molecular aging target) but also the stratification of prospective cancer risk. Here, we introduce the MiAge Calculator, a mitotic age calculator based on a novel statistical framework, the MiAge model. MiAge is designed to quantitatively estimate mitotic age (total number of lifetime cell divisions) of a tissue using the stochastic replication errors accumulated in the epigenetic inheritance process during cell divisions. With the MiAge model, the MiAge Calculator was built using the training data of DNA methylation measures of 4,020 tumor and adjacent normal tissue samples from eight TCGA cancer types and was tested using the testing data of DNA methylation measures of 2,221 tumor and adjacent normal tissue samples of five other TCGA cancer types. We showed that within each of the thirteen cancer types studied, the estimated mitotic age is universally accelerated in tumor tissues compared to adjacent normal tissues. Across the thirteen cancer types, we showed that worse cancer survivals are associated with more accelerated mitotic age in tumor tissues. Importantly, we demonstrated the utility of mitotic age by showing that the integration of mitotic age and clinical information leads to improved survival prediction in six out of the thirteen cancer types studied. The MiAge Calculator is available at <a href="http://www.columbia.edu/∼sw2206/softwares.htm" target="_blank">http://www.columbia.edu/∼sw2206/softwares.htm</a>.</p

    Alpha TC1 and Beta-TC-6 genomic profiling uncovers both shared and distinct transcriptional regulatory features with their primary islet counterparts.

    No full text
    Alpha TC1 (αTC1) and Beta-TC-6 (βTC6) mouse islet cell lines are cellular models of islet (dys)function and type 2 diabetes (T2D). However, genomic characteristics of these cells, and their similarities to primary islet alpha and beta cells, are undefined. Here, we report the epigenomic (ATAC-seq) and transcriptomic (RNA-seq) landscapes of αTC1 and βTC6 cells. Each cell type exhibits hallmarks of its primary islet cell counterpart including cell-specific expression of beta (e.g., Pdx1) and alpha (e.g., Arx) cell transcription factors (TFs), and enrichment of binding motifs for these TFs in αTC1/βTC6 cis-regulatory elements. αTC1/βTC6 transcriptomes overlap significantly with the transcriptomes of primary mouse/human alpha and beta cells. Our data further indicate that ATAC-seq detects cell-specific regulatory elements for cell types comprising ≥ 20% of a mixed cell population. We identified αTC1/βTC6 cis-regulatory elements orthologous to those containing type 2 diabetes (T2D)-associated SNPs in human islets for 33 loci, suggesting these cells\u27 utility to dissect T2D molecular genetics in these regions. Together, these maps provide important insights into the conserved regulatory architecture between αTC1/βTC6 and primary islet cells that can be leveraged in functional (epi)genomic approaches to dissect the genetic and molecular factors controlling islet cell identity and function. Sci Rep 2017 Sep 20; 7(1):11959

    Type 2 Diabetes-Associated Genetic Variants Regulate Chromatin Accessibility in Human Islets.

    No full text
    Type 2 diabetes (T2D) is a complex disorder in which both genetic and environmental risk factors contribute to islet dysfunction and failure. Genome-wide association studies (GWAS) have linked single nucleotide polymorphisms (SNPs), most of which are noncoding, in \u3e200 loci to islet dysfunction and T2D. Identification of the putative causal variants and their target genes and whether they lead to gain or loss of function remains challenging. Here, we profiled chromatin accessibility in pancreatic islet samples from 19 genotyped individuals and identified 2,949 SNPs associated with in viv
    corecore