45 research outputs found

    Animal and Plant Protein Oxidation: Chemical and Functional Property Significance

    Get PDF
    Protein oxidation, a phenomenon that was not well recognized previously but now better understood, is a complex chemical process occurring ubiquitously in food systems and can be induced by processing treatments as well. While early research concentrated on muscle protein oxidation, later investigations included plant, milk, and egg proteins. The process of protein oxidation involves both radicals and nonradicals, and amino acid side chain groups are usually the site of initial oxidant attack which generates protein carbonyls, disulfide, dityrosine, and protein radicals. The ensuing alteration of protein conformational structures and formation of protein polymers and aggregates can result in significant changes in solubility and functionality, such as gelation, emulsification, foaming, and water-holding. Oxidant dose-dependent effects have been widely reported, i.e., mild-to-moderate oxidation may enhance the functionality while strong oxidation leads to insolubilization and functionality losses. Therefore, controlling the extent of protein oxidation in both animal and plant protein foods through oxidative and antioxidative strategies has been of wide interest in model system as well in in situ studies. This review presents a historical perspective of food protein oxidation research and provides an inclusive discussion of the impact of chemical and enzymatic oxidation on functional properties of meat, legume, cereal, dairy, and egg proteins based on the literature reports published in recent decades

    DNN-Based ADNMPC of an Industrial Pickling Cold-Rolled Titanium Process via Field Enhancement Heat Exchange

    Get PDF
    The dynamic neural network based adaptive direct nonlinear model predictive control is designed to control an industrial microwave heating pickling cold-rolled titanium process. The identifier of the direct adaptive nonlinear model identification and the controller of the adaptive nonlinear model predictive control are designed based on series-parallel dynamic neural network training by RLS algorithm with variable incremental factor, gain, and forgetting factor. These identifier and controller are used to constitute intelligent controller for adjusting the temperature of microwave heating acid. The correctness of the controller structure, the convergence, and feasibility of the control algorithms is tested by system simulation. For a given point tracking, model mismatch simulation results show that the controller can be implemented on the system to track and overcome the mismatch system model. The control model can be achieved to track on pickling solution concentration and temperature of a given reference and overcome the disturbance

    PSR J1926-0652: A Pulsar with Interesting Emission Properties Discovered at FAST

    Get PDF
    We describe PSR J1926-0652, a pulsar recently discovered with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). Using sensitive single-pulse detections from FAST and long-term timing observations from the Parkes 64-m radio telescope, we probed phenomena on both long and short time scales. The FAST observations covered a wide frequency range from 270 to 800 MHz, enabling individual pulses to be studied in detail. The pulsar exhibits at least four profile components, short-term nulling lasting from 4 to 450 pulses, complex subpulse drifting behaviours and intermittency on scales of tens of minutes. While the average band spacing P3 is relatively constant across different bursts and components, significant variations in the separation of adjacent bands are seen, especially near the beginning and end of a burst. Band shapes and slopes are quite variable, especially for the trailing components and for the shorter bursts. We show that for each burst the last detectable pulse prior to emission ceasing has different properties compared to other pulses. These complexities pose challenges for the classic carousel-type models.Comment: 13pages with 12 figure

    A Genome-Wide Linkage and Association Scan Reveals Novel Loci for Hypertension and Blood Pressure Traits

    Get PDF
    Hypertension is caused by the interaction of environmental and genetic factors. The condition which is very common, with about 18% of the adult Hong Kong Chinese population and over 50% of older individuals affected, is responsible for considerable morbidity and mortality. To identify genes influencing hypertension and blood pressure, we conducted a combined linkage and association study using over 500,000 single nucleotide polymorphisms (SNPs) genotyped in 328 individuals comprising 111 hypertensive probands and their siblings. Using a family-based association test, we found an association with SNPs on chromosome 5q31.1 (rs6596140; P<9×10−8) for hypertension. One candidate gene, PDC, was replicated, with rs3817586 on 1q31.1 attaining P = 2.5×10−4 and 2.9×10−5 in the within-family tests for DBP and MAP, respectively. We also identified regions of significant linkage for systolic and diastolic blood pressure on chromosomes 2q22 and 5p13, respectively. Further family-based association analysis of the linkage peak on chromosome 5 yielded a significant association (rs1605685, P<7×10−5) for DBP. This is the first combined linkage and association study of hypertension and its related quantitative traits with Chinese ancestry. The associations reported here account for the action of common variants whereas the discovery of linkage regions may point to novel targets for rare variant screening

    Identification of IGF1, SLC4A4, WWOX, and SFMBT1 as Hypertension Susceptibility Genes in Han Chinese with a Genome-Wide Gene-Based Association Study

    Get PDF
    Hypertension is a complex disorder with high prevalence rates all over the world. We conducted the first genome-wide gene-based association scan for hypertension in a Han Chinese population. By analyzing genome-wide single-nucleotide-polymorphism data of 400 matched pairs of young-onset hypertensive patients and normotensive controls genotyped with the Illumina HumanHap550-Duo BeadChip, 100 susceptibility genes for hypertension were identified and also validated with permutation tests. Seventeen of the 100 genes exhibited differential allelic and expression distributions between patient and control groups. These genes provided a good molecular signature for classifying hypertensive patients and normotensive controls. Among the 17 genes, IGF1, SLC4A4, WWOX, and SFMBT1 were not only identified by our gene-based association scan and gene expression analysis but were also replicated by a gene-based association analysis of the Hong Kong Hypertension Study. Moreover, cis-acting expression quantitative trait loci associated with the differentially expressed genes were found and linked to hypertension. IGF1, which encodes insulin-like growth factor 1, is associated with cardiovascular disorders, metabolic syndrome, decreased body weight/size, and changes of insulin levels in mice. SLC4A4, which encodes the electrogenic sodium bicarbonate cotransporter 1, is associated with decreased body weight/size and abnormal ion homeostasis in mice. WWOX, which encodes the WW domain-containing protein, is related to hypoglycemia and hyperphosphatemia. SFMBT1, which encodes the scm-like with four MBT domains protein 1, is a novel hypertension gene. GRB14, TMEM56 and KIAA1797 exhibited highly significant differential allelic and expressed distributions between hypertensive patients and normotensive controls. GRB14 was also found relevant to blood pressure in a previous genetic association study in East Asian populations. TMEM56 and KIAA1797 may be specific to Taiwanese populations, because they were not validated by the two replication studies. Identification of these genes enriches the collection of hypertension susceptibility genes, thereby shedding light on the etiology of hypertension in Han Chinese populations

    Genetic and genomic mapping of common diseases

    No full text
     Genome-wide mapping of susceptibility genes was conducted in two complex disorders of hypertension and epilepsy, allowing the dissection of the genetic architecture of these common diseases and related quantitative traits. The study performed comprehensive genetic analyses in a genome-wide scale, using different structure of data – sib-pairs and case-control samples. To identify genes influencing hypertension and blood pressure, a combined linkage and association study was conducted using over half a million SNPs genotyped in 328 siblings. Regions of significant linkage were identified for blood pressure traits on chromosomes 2q22.3 and 5p13.2, respectively. Further family-based association analysis of the linkage peak on chromosome 5 yielded a significant association (rs1605685, P < 7 10-5) for hypertension. One candidate gene, PDC, was replicated in the family-based association tests. A two-stage genome-wide association study (GWAS) was performed in a total of 1,087 cases and 3,444 controls, to identify common susceptibility variants of epilepsy in Chinese. The combined analysis identified two association signals in CAMSAP1L1, rs2292096 [G] (P=1.0×10-8, OR =0.63) and rs6660197 [T] (P=9.9×10-7, OR=0.69), which are highly correlated, achieving genome-wide significance. One SNP (rs9390754, P = 1.7 × 10-5) in GRIK2 was refined as a previously-implicated association. In addition to SNPs, the assessment of CNVs in GWAS was performed, which could provide valuable clues to discover genes contributing to the heritability of epilepsy. A genome-wide scan for epilepsy through the use of DNA pooling also provides an alternative approach to reducing the substantial cost and thus increase efficiency in large-scale genetic association studies. The genome-wide mapping studies in families and unrelated individuals are complementary and together offer a comprehensive catalog of common variations and structural variants implicated for both quantitative and qualitative traits.published_or_final_versionPsychiatryDoctoralDoctor of Philosoph

    DNN-Based ADNMPC of an Industrial Pickling Cold-Rolled Titanium Process via Field Enhancement Heat Exchange

    Get PDF
    The dynamic neural network based adaptive direct nonlinear model predictive control is designed to control an industrial microwave heating pickling cold-rolled titanium process. The identifier of the direct adaptive nonlinear model identification and the controller of the adaptive nonlinear model predictive control are designed based on series-parallel dynamic neural network training by RLS algorithm with variable incremental factor, gain, and forgetting factor. These identifier and controller are used to constitute intelligent controller for adjusting the temperature of microwave heating acid. The correctness of the controller structure, the convergence, and feasibility of the control algorithms is tested by system simulation. For a given point tracking, model mismatch simulation results show that the controller can be implemented on the system to track and overcome the mismatch system model. The control model can be achieved to track on pickling solution concentration and temperature of a given reference and overcome the disturbance

    Circular RNA F-circEA-2a derived from EML4-ALK fusion gene promotes cell migration and invasion in non-small cell lung cancer

    No full text
    Abstract Oncogenic fusion gene Echinoderm Microtubule-associated protein-Like 4-Anaplastic Lymphoma Kinase (EML4-ALK) contributes to tumorigenesis of a subset of non-small cell lung cancer (NSCLC). Recently, we demonstrated that F-circEA-4a, a tumor-promoting circular RNA (circRNA) generated from the back-splicing of EML4-ALK variant 3b (v3b), is a novel liquid biopsy biomarker for NSCLC. However, circRNAs produced from EML4-ALK gene and their roles in NSCLC are not well-characterized. Here, we identify another EML4-ALK-v3b-derived circRNA, F-circEA-2a, harboring “AA” (rather than “AAAA” in F-circEA-4a) motif at the junction site. F-circEA-2a mainly locates in the cytoplasm and promotes cell migration and invasion, but has little effect on cell proliferation. Moreover, F-circEA-2a exists in tumor, but not in the plasma of NSCLC patients with EML4-ALK fusion gene, further supporting the significant diagnostic value of F-circEA-4a for EML4-ALK-positive NSCLC. This work finds a novel oncogenic circRNA generated from EML4-ALK fusion gene, highlighting the pivotal role of circRNA in EML4-ALK-positive NSCLC development
    corecore