107 research outputs found

    Reliability of two goniometric methods of measuring active inversion and eversion range of motion at the ankle

    Get PDF
    BACKGROUND: Active inversion and eversion ankle range of motion (ROM) is widely used to evaluate treatment effect, however the error associated with the available measurement protocols is unknown. This study aimed to establish the reliability of goniometry as used in clinical practice. METHODS: 30 subjects (60 ankles) with a wide variety of ankle conditions participated in this study. Three observers, with different skill levels, measured active inversion and eversion ankle ROM three times on each of two days. Measurements were performed with subjects positioned (a) sitting and (b) prone. Intra-class correlation coefficients (ICC([2,1])) were calculated to determine intra- and inter-observer reliability. RESULTS: Within session intra-observer reliability ranged from ICC([2,1] )0.82 to 0.96 and between session intra-observer reliability ranged from ICC([2,1] )0.42 to 0.80. Reliability was similar for the sitting and the prone positions, however, between sessions, inversion measurements were more reliable than eversion measurements. Within session inter-observer measurements in sitting were more reliable than in prone and inversion measurements were more reliable than eversion measurements. CONCLUSION: Our findings show that ankle inversion and eversion ROM can be measured with high to very high reliability by the same observer within sessions and with low to moderate reliability by different observers within a session. The reliability of measures made by the same observer between sessions varies depending on the direction, being low to moderate for eversion measurements and moderate to high for inversion measurements in both positions

    A digitally-augmented ground space with timed visual cues for facilitating forearm crutches’ mobility

    Get PDF
    Persuasive technologies for physical rehabilitation have been pro posed in a number of different health interventions such as post-stroke gait rehabilitation. We propose a new persuasive system, called Augmented Crut ches, aimed at helping people to walk with crutches. People with injuries, or with any sort of mobility problem typically use assistive devices such as crut ches, walkers or canes in order to be able to walk more independently. However, walking with crutches is a learning skill that needs continuous repetition and constant attention to detail in order to walk correctly with them and without suffering negative consequences, such as falls or injuries. In close collaboration with therapists, we identify the main issues that patients face when walking with crutches. These vary from person to person, but the most common and hardest challenges are the position and coordination of the crutches. Augmented Crut ches studies human behavior aspects in these situations and augments the ground space around the user with digital visual cues where timing is the most important factor, without the need for a constant therapist providing manual help. This is performed through a mini-projector connected to a smartphone, worn by the user in a portable, lightweight manner. Our system helps people to learn how to walk using crutches with increased self-confidence and motivation. Additionally, our work identifies timing, controllability and awareness as the key design dimensions for the successful creation of persuasive, interactive experiences for learning how to walk with crutches.info:eu-repo/semantics/publishedVersio

    Photographic measurement of upper-body sitting posture of high school students: A reliability and validity study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>All the reported measures of sitting posture, as well as photographs, have one flaw, as these measures are external to the body. These measures use calculations from external bony landmarks to estimate spinal posture, on the understanding that what is being measured externally reflects the shape, health and performance of structures of the underlying spine. Without a comparative measure of the relative position of the structures of the spine, the validity of any external spinal posture measure cannot be established. This paper reports on a study which tests the validity of photographs to measure adolescent sitting posture.</p> <p>Methods</p> <p>The study was conducted in a laboratory at the Department of Human Biology, University of Cape Town. A random sample of 40 adolescents were recruited from the Cape metropolitan schools, to detect differences of three degrees or more between the repeated measures of upright, normal or slouched posture (photographs) and between the posture photographs and LODOX measures. Eligible participants were healthy male and female subjects aged 15 or 16 years old, in Grade 10, and who were undertaking Computer or Computype studies at their schools. Two posture measurement tools were used in the study, namely: Photographs were taken using the Photographic Posture Analysis Method (PPAM) and Radiograph<it>s </it>were taken using the LODOX (LODOX (Pty) Ltd) system. Subjects' posture was assessed in simulated computer workstations. The following angles were measured: the sagittal head angle, cervical angle, protraction/retraction angle, arm angle and the thoracic angle.</p> <p>Results</p> <p>Data from 39 subjects (19 males, 20 females) was used for analysis (17 15-year-olds (7 boys and 10 girls), 22 16-year-olds (12 boys and 10 girls)). All but one photographic angle showed moderate to good correlation with the LODOX angles (Pearson r values 0.67–0.95) with the exception being the shoulder protraction/retraction angle Pearson r values. Bland Altman limits of agreement illustrated a slight bias for all angles. The reliability study findings from repeated photographs demonstrated moderate to good correlation of all angles (ICC values 0.78–0.99).</p> <p>Conclusion</p> <p>The findings of this study suggest that photographs provide valid and reliable indicators of the position of the underlying spine in sitting. Clinically it is important to know whether a patient is showing true progression in relation to a postural intervention. Based on the results of this study, the PPAM can be used in practice as a valid measure of sitting posture.</p

    Comparing lumbo-pelvic kinematics in people with and without back pain: A systematic review and meta-analysis

    Get PDF
    Background: Clinicians commonly examine posture and movement in people with the belief that correcting dysfunctional movement may reduce pain. If dysfunctional movement is to be accurately identified, clinicians should know what constitutes normal movement and how this differs in people with low back pain (LBP). This systematic review examined studies that compared biomechanical aspects of lumbo-pelvic movement in people with and without LBP. Methods. MEDLINE, Cochrane Central, EMBASE, AMI, CINAHL, Scopus, AMED, ISI Web of Science were searched from inception until January 2014 for relevant studies. Studies had to compare adults with and without LBP using skin surface measurement techniques to measure lumbo-pelvic posture or movement. Two reviewers independently applied inclusion and exclusion criteria, and identified and extracted data. Standardised mean differences and 95% confidence intervals were estimated for group differences between people with and without LBP, and where possible, meta-analyses were performed. Within-group variability in all measurements was also compared. Results: The search identified 43 eligible studies. Compared to people without LBP, on average, people with LBP display: (i) no difference in lordosis angle (8 studies), (ii) reduced lumbar ROM (19 studies), (iii) no difference in lumbar relative to hip contribution to end-range flexion (4 studies), (iv) no difference in standing pelvic tilt angle (3 studies), (v) slower movement (8 studies), and (vi) reduced proprioception (17 studies). Movement variability appeared greater for people with LBP for flexion, lateral flexion and rotation ROM, and movement speed, but not for other movement characteristics. Considerable heterogeneity exists between studies, including a lack of detail or standardization between studies on the criteria used to define participants as people with LBP (cases) or without LBP (controls). Conclusions: On average, people with LBP have reduced lumbar ROM and proprioception, and move more slowly compared to people without LBP. Whether these deficits exist prior to LBP onset is unknown

    Clinimetric evaluation of active range of motion measures in patients with non-specific neck pain: a systematic review

    Get PDF
    The study is to provide a critical analysis of the research literature on clinimetric properties of instruments that can be used in daily practice to measure active cervical range of motion (ACROM) in patients with non-specific neck pain. A computerized literature search was performed in Medline, Cinahl and Embase from 1982 to January 2007. Two reviewers independently assessed the clinimetric properties of identified instruments using a criteria list. The search identified a total of 33 studies, investigating three different types of measurement instruments to determine ACROM. These instruments were: (1) different types of goniometers/inclinometers, (2) visual estimation, and (3) tape measurements. Intra- and inter-observer reliability was demonstrated for the cervical range of motion instrument (CROM), Cybex electronic digital instrument (EDI-320) and a single inclinometer. The presence of agreement was assessed for the EDI-320 and a single inclinometer. The CROM received a positive rating for construct validity. When clinical acceptability is taken into account both the CROM and the single inclinometer can be considered appropriate instruments for measuring the active range of motion in patients with non-specific neck pain in daily practice. Reliability is the aspect most frequently evaluated. Agreement, validity and responsiveness are documented less frequently

    Reliability of goniometric measurements in children with cerebral palsy: A comparative analysis of universal goniometer and electronic inclinometer. A pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Even though technological progress has provided us with more and more sophisticated equipment for making goniometric measurements, the most commonly used clinical tools are still the universal goniometer and, to a lesser extent, the inclinometer. There is, however, no published study so far that uses an inclinometer for measurements in children with cerebral palsy (CP). The objective of this study was two-fold: to independently assess the intra and inter-examiner reliability for measuring the hip abduction range of motion in children with CP using two different instruments, the universal two-axis goniometer and electronic inclinometer. A pool of 5 examiners with different levels of experience as paediatric physiotherapists participated. The study did not compare both instruments because the measurement procedure and the hip position were different for each.</p> <p>Methods</p> <p>A prospective, observational study of goniometery was carried out with 14 lower extremities of 7 children with spastic CP. The inclinometer study was carried out with 8 lower extremities of 4 children with spastic CP. This study was divided into two independent parts: a study of the reliability of the hip abduction range of motion measured with a universal goniometer (hip at 0° flexion) and with an electronic inclinometer (hip at 90° flexion). The Intraclass Correlation Coefficient (ICC) was calculated to analyse intra and inter-examiner agreement for each instrument.</p> <p>Results</p> <p>For the goniometer, the intra-examiner reliability was excellent (>0.80), while the inter-examiner reliability was low (0.375 and 0.475). For the inclinometer, both the intra-examiner (0.850-0.975) and inter-examiner reliability were excellent (0.965 and 0.979).</p> <p>Conclusions</p> <p>The inter-examiner reliability for goniometric measurement of hip abduction in children with CP was low, in keeping with other results found in previous publications. The inclinometer has proved to be a highly reliable tool for measuring the hip abduction range of motion in children with CP, which opens up new possibilities in this field, despite having some measurement limitations.</p

    Mechanosensitivity during lower extremity neurodynamic testing is diminished in individuals with Type 2 Diabetes Mellitus and peripheral neuropathy: a cross sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type 2 Diabetes Mellitus (T2DM) and diabetic symmetrical polyneuropathy (DSP) impact multiple modalities of sensation including light touch, temperature, position sense and vibration perception. No study to date has examined the mechanosensitivity of peripheral nerves during limb movement in this population. The objective was to determine the unique effects T2DM and DSP have on nerve mechanosensitivity in the lower extremity.</p> <p>Methods</p> <p>This cross-sectional study included 43 people with T2DM. Straight leg raise neurodynamic tests were performed with ankle plantar flexion (PF/SLR) and dorsiflexion (DF/SLR). Hip flexion range of motion (ROM), lower extremity muscle activity and symptom profile, intensity and location were measured at rest, first onset of symptoms (P1) and maximally tolerated symptoms (P2).</p> <p>Results</p> <p>The addition of ankle dorsiflexion during SLR testing reduced the hip flexion ROM by 4.3° ± 6.5° at P1 and by 5.4° ± 4.9° at P2. Individuals in the T2DM group with signs of severe DSP (n = 9) had no difference in hip flexion ROM between PF/SLR and DF/SLR at P1 (1.4° ± 4.2°; paired t-test p = 0.34) or P2 (0.9° ± 2.5°; paired t-test p = 0.31). Movement induced muscle activity was absent during SLR with the exception of the tibialis anterior during DF/SLR testing. Increases in symptom intensity during SLR testing were similar for both PF/SLR and DF/SLR. The addition of ankle dorsiflexion induced more frequent posterior leg symptoms when taken to P2.</p> <p>Conclusions</p> <p>Consistent with previous recommendations in the literature, P1 is an appropriate test end point for SLR neurodynamic testing in people with T2DM. However, our findings suggest that people with T2DM and severe DSP have limited responses to SLR neurodynamic testing, and thus may be at risk for harm from nerve overstretch and the information gathered will be of limited clinical value.</p

    Can cognitive enhancers reduce the risk of falls in older people with Mild Cognitive Impairment? A protocol for a randomised controlled double blind trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Older adults with cognitive problems have a higher risk of falls, at least twice that of cognitively normal older adults. The consequences of falls in this population are very serious: fallers with cognitive problems suffer more injuries due to falls and are approximately five times more likely to be admitted to institutional care. Although the mechanisms of increased fall risk in cognitively impaired people are not completely understood, it is known that impaired cognitive abilities can reduce attentional resource allocation while walking. Since cognitive enhancers, such as cholinesterase inhibitors, improve attention and executive function, we hypothesise that cognitive enhancers may reduce fall risk in elderly people in the early stages of cognitive decline by improving their gait and balance performance due to an enhancement in attention and executive function.</p> <p>Method/Design</p> <p>Double blinded randomized controlled trial with 6 months follow-up in 140 older individuals with Mild Cognitive Impairment (MCI). Participants will be randomized to the intervention group, receiving donepezil, and to the control group, receiving placebo. A block randomization by four and stratification based on fall history will be performed. Primary outcomes are improvements in gait velocity and reduction in gait variability. Secondary outcomes are changes in the balance confidence, balance sway, attention, executive function, and number of falls.</p> <p>Discussion</p> <p>By characterizing and understanding the effects of cognitive enhancers on fall risk in older adults with cognitive impairments, we will be able to pave the way for a new approach to fall prevention in this population. This RCT study will provide, for the first time, information regarding the effect of a medication designed to augment cognitive functioning have on the risk of falls in older adults with Mild Cognitive Impairment. We expect a significant reduction in the risk of falls in this vulnerable population as a function of the reduced gait variability achieved by treatment with cognitive enhancers. This study may contribute to a new approach to prevent and treat fall risk in seniors in early stages of dementia.</p> <p>Trial Registration</p> <p>The protocol for this study is registered with the Clinical Trials Registry, identifier number: NCT00934531 <url>http://www.clinicaltrials.gov</url></p
    corecore