1,099 research outputs found

    Optical isolation with nonlinear topological photonics

    Full text link
    It is shown that the concept of topological phase transitions can be used to design nonlinear photonic structures exhibiting power thresholds and discontinuities in their transmittance. This provides a novel route to devising nonlinear optical isolators. We study three representative designs: (i) a waveguide array implementing a nonlinear 1D Su-Schrieffer-Heeger (SSH) model, (ii) a waveguide array implementing a nonlinear 2D Haldane model, and (iii) a 2D lattice of coupled-ring waveguides. In the first two cases, we find a correspondence between the topological transition of the underlying linear lattice and the power threshold of the transmittance, and show that the transmission behavior is attributable to the emergence of a self-induced topological soliton. In the third case, we show that the topological transition produces a discontinuity in the transmittance curve, which can be exploited to achieve sharp jumps in the power-dependent isolation ratio.Comment: 11 pages, 7 figure

    A torque-controlled humanoid robot riding on a two-wheeled mobile platform

    Get PDF
    This paper is motivated by the questions: What would happen if a humanoid robot is put on a Segway? Is it possible for the humanoid robot to use this transportation device that is specifically designed for human? Simulation involving a two-wheeled mobile platform (TWMP) and our humanoid robot COMAN (COmpliant HuMANoid Platform) shows that it is indeed feasible without any hardware modification. Regarding the implementation, the full dynamics of the humanoid robot is considered and quadratic optimization is employed to generate whole-body joint torques to realise two types of tasks according to the interaction type between the TWMP and the humanoid robot. The TWMP is considered as unknown disturbance and the humanoid robot has to keep balancing on it in the first type of task. On the contrary, the active movement of the humanoid robot is utilised as an interface to intuitively drive the TWMP in the second type of task. For both tasks, tracking the position of center of mass (CoM) and regulating the angular momentum around it are considered as primary objectives, stabilizing the posture of certain part of its body is optional. In addition, both tasks are repeated on uneven terrain to demonstrate the robustness of the control method

    Neural-Network-Controlled Spring Mass Template for Humanoid Running

    Get PDF
    To generate dynamic motions such as hopping and running on legged robots, model-based approaches are usually used to embed the well studied spring-loaded inverted pendulum (SLIP) model into the whole-body robot. In producing controlled SLIP-like behaviors, existing methods either suffer from online incompatibility or resort to classical interpolations based on lookup tables. Alternatively, this paper presents the application of a data-driven approach which obviates the need for solving the inverse of the running return map online. Specifically, a deep neural network is trained offline with a large amount of simulation data based on the SLIP model to learn its dynamics. The trained network is applied online to generate reference foot placements for the humanoid robot. The references are then mapped to the whole-body model through a QP-based inverse dynamics controller. Simulation experiments on the WALK-MAN robot are conducted to evaluate the effectiveness of the proposed approach in generating bio-inspired and robust running motions

    HDAC6 inhibition alleviates acute pulmonary embolism: a possible future therapeutic option

    Get PDF
    Introduction. Acute pulmonary embolism (APE) is a clinical syndrome of pulmonary circulation disorder caused by obstruction of the pulmonary artery or its branches. Histone deacetylase 6 (HDAC6) has been reported to play an important role in lung-related diseases. However, the functional role of HDAC6 in APE remains unclear. Material and methods. Male Sprague Dawley rats were used. The APE model was constructed by inserting an intravenous cannula into the right femoral vein and injecting Sephadex G-50 microspheres (12 mg/kg; 300 μm in diameter). After 1 h, the control and APE rats were intraperitoneally injected with tubastatin A (TubA) (40 mg/kg, an inhibitor of HDAC6) and sampled at 24 h after modeling. H&E staining, arterial blood gas analysis, and wet/dry (W/D) weight ratio were used to evaluate the histopathological changes and pulmonary function in APE rats. ELISA, Western blot, and immunohistochemistry were used to explore the potential mechanism of HDAC6-mediated inflammation in APE. Results. The results indicated that HDAC6 expression was significantly increased in lungs of APE rats. TubA treatment in vivo decreased HDAC6 expression in lung tissues. HDAC6 inhibition alleviated histopathological damage and pulmonary dysfunction, as evidenced by decreased PaO2/FiO2 ratio and W/D weight ratio in APE rats. Furthermore, HDAC6 inhibition alleviated APE-induced inflammatory response. Specifically, APE rats exhibited increased production of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, and IL-18, however, this increase was reversed by HDAC6 inhibition. Meanwhile, the activation of the NLRP3 inflammasome was also observed in lungs of APE rats, while HDAC6 inhibition blocked this activation. Mechanically, we demonstrated that HDAC6 inhibition blocked the activation of the protein kinase B (AKT)/extracellular signal-regulated protein kinase (ERK) signaling pathway, a classic pathway promoting inflammation. Conclusions. These findings demonstrate that the inhibition of HDAC6 may alleviate lung dysfunction and pathological injury resulting from APE by blocking the AKT/ERK signaling pathway, providing new theoretical fundamentals for APE therapy

    Synergy of arsenic with smoking in causing cardiovascular disease mortality: A cohort study with 27 follow-up years in China

    Get PDF
    BackgroundTo explore the patterns of the exposure-response relationship between arsenic exposure and cardiovascular disease (CVD) mortality and investigate the effect of cigarette smoking on the association.MethodsSeven thousand seven hundred thirty-five tin miners with at least 10 years of arsenic exposure were enrolled since 1992 and followed up for 27 years. Each individual's air arsenic exposure at workplace was calculated by time weighted average arsenic concentration × exposure months. Detailed information on smoking was collected at baseline, and information on smoking status was collected for five consecutive years from 1992 to 1996. Hazard ratio (HR) and 95% confidence interval (CI) for the risk of CVD were estimated using Cox proportional hazards models.ResultsA total of 1,046 CVD deaths occurred in this cohort over 142,287.7 person-years of follow up. We firstly reported that for equal cumulative exposure, participants exposed to higher concentrations over shorter duration had a higher risk of CVD mortality than those exposed to lower concentration over longer duration. The HR and 95% CI were 1.38 (95%CI: 1.03–1.85) in participants exposed to arsenic concentration (45.5–99.5 mg/m3), 1.29 (95%CI: 1.02–1.67) in 99.5–361.0 mg/m3. Further, participants with age at first exposure <18 years had a significantly higher risk of morality from CVD, cerebrovascular and heart diseases than those with ≥18 years. Finally, all synergy indices were greater than 1 (range, 1.11–2.39), indicating that the joint effect of arsenic exposure and cigarette smoking on CVD mortality was greater than the sum of their individual effect.ConclusionsExposure to air arsenic at workplace is adversely associated with mortality from CVD, especially among smokers younger than 18 years and smokers

    Topological chiral kagome lattice

    Full text link
    Chirality, a fundamental structural property of crystals, can induce many unique topological quantum phenomena. In kagome lattice, unconventional transports have been reported under tantalizing chiral charge order. Here, we show how by deforming the kagome lattice to obtain a three-dimensional (3D) chiral kagome lattice in which the key band features of the non-chiral 2D kagome lattice - flat energy bands, van Hove singularities (VHSs), and degeneracies - remain robust in both the kzk_z = 0 and π\pi planes in momentum space. Given the handedness of our kagome lattice, degenerate momentum points possess quantized Chern numbers, ushering in the realization of Weyl fermions. Our 3D chiral kagome lattice surprisingly exhibits 1D behavior on its surface, where topological surface Fermi arc states connecting Weyl fermions are dispersive in one momentum direction and flat in the other direction. These 1D Fermi arcs open up unique possibilities for generating unconventional non-local transport phenomena at the interfaces of domains with different handedness, and the associated enhanced conductance as the separation of the leads on the surface is increased. Employing first-principles calculations, we investigate in-depth the electronic and phononic structures of representative materials within the ten space groups that can support topological chiral kagome lattices. Our study opens a new research direction that integrates the advantages of structural chirality with those of a kagome lattice and thus provides a new materials platform for exploring unique aspects of correlated topological physics in chiral lattices.Comment: 7 pages, 4 figure

    Influence of Ethnicity on the Accuracy of Non-Invasive Scores Predicting Non-Alcoholic Fatty Liver Disease

    Get PDF
    Objectives Presence of non-alcoholic fatty liver disease (NAFLD) can predict risks for diabetes, cardiovascular disease and advanced liver disease in the general population. We aimed to establish a non-invasive score for prediction of NAFLD in Han Chinese, the largest ethnic group in the world, and detect whether ethnicity influences the accuracy of such a score. Methods Liver fat content (LFAT) was measured by quantitative ultrasound in 3548 subjects in the Shanghai Changfeng Community and a Chinese score was created using multivariate logistic regression analyses. This new score was internally validated in Chinese and externally in Finns. Its diagnostic performance was compared to the NAFLD liver fat score, fatty liver index (FLI) and hepatic steatosis index (HSI) developed in Finns, Italians and Koreans. We also analyzed how obesity related to LFAT measured by H-1-MRS in 79 Finns and 118 Chinese with type 2 diabetes (T2D). Results The metabolic syndrome and T2D, fasting serum insulin, body mass index (BMI) and AST/ALT ratio were independent predictors of NAFLD in Chinese. The AUROC in the Chinese validation cohort was 0.76 (0.73-0.78) and in Finns 0.73 (0.68-0.78) (p Conclusion The predictors of NAFLD in Han Chinese are as in Europids but the Chinese have more LFAT for any given degree of obesity than Europids. Ethnicity needs to be considered when NAFLD is predicted using risk scores.Peer reviewe
    • …
    corecore