
This is a repository copy of Neural-Network-Controlled Spring Mass Template for
Humanoid Running.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/144458/

Version: Accepted Version

Proceedings Paper:
Xin, S, Delhaisse, B, You, Y et al. (3 more authors) (2018) Neural-Network-Controlled
Spring Mass Template for Humanoid Running. In: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2018 IEEE/RSJ (IROS), 01-05 Oct
2018, Madrid, Spain. IEEE , pp. 1725-1731. ISBN 978-1-5386-8094-0

https://doi.org/10.1109/IROS.2018.8593403

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Neural-Network-Controlled Spring Mass Template for Humanoid Running

Songyan Xin, Brian Delhaisse, Yangwei You, Chengxu Zhou,

Mohammad Shahbazi, Nikos Tsagarakis

Abstract— To generate dynamic motions such as hopping and
running on legged robots, model-based approaches are usually
used to embed the well studied spring-loaded inverted pen-
dulum (SLIP) model into the whole-body robot. In producing
controlled SLIP-like behaviors, existing methods either suffer
from online incompatibility or resort to classical interpolations
based on lookup tables. Alternatively, this paper presents the
application of a data-driven approach which obviates the need
for solving the inverse of the running return map online.
Specifically, a deep neural network is trained offline with a
large amount of simulation data based on the SLIP model to
learn its dynamics. The trained network is applied online to
generate reference foot placements for the humanoid robot. The
references are then mapped to the whole-body model through a
QP-based inverse dynamics controller. Simulation experiments
on the WALK-MAN robot are conducted to evaluate the effec-
tiveness of the proposed approach in generating bio-inspired
and robust running motions.

I. INTRODUCTION

The Spring-Loaded Inverted Pendulum (SLIP) model is

a well recognized template model [1] for hopping and

running based on the biomechanical studies [2], [3]. Despite

its simplicity, it accurately describes the CoM dynamics,

ground reaction force profiles, and transitioning between

different phases of motion observed in humans [4]. Thanks

to its reductive and platform-independent model, it has been

widely used in the design and control of legged robots [5]–

[8]. In particular, the controlled SLIP is used as a planner

in the high-level control structures of robot to provide it

with references that are implicitly consistent with the natural

dynamics of running.

The SLIP running is a dynamic gait rendering cyclic

stability, which requires a sufficiently large prediction hori-

zon for control. Early studies in this regard are largely

influenced by the simple intuitive control implemented on

Raibert’s hoppers [9]. The machines were able to exhibit

dynamic behaviors while it was assumed that the control

of hopping height, speed and posture are decomposed. Al-

though inspiring, all those robots share similar design of

light prismatic legs, i.e., a SLIP-like morphology. When

it comes to controlling legged robots with non SLIP-like

morphologies like a humanoid, such an intuitive approach

inspired by biology alone shows limited success. Moreover,

the aforementioned decoupling leads to long convergence

time due to the simplistic model used for control.

A large body of research in the SLIP literature has been

directed towards more accurate and realistic controls, most

of which may be categorized into two schemes: the methods

Department of Advanced Robotics, Istituto Italiano di Tecnologia, via
Morego, 30, 16163 Genova, Italy.

Email: name.surname@iit.it

Fig. 1. WALK-MAN Lower body running in simulation. The Center of
Mass dynamics of the robot is controlled to match that of a SLIP model. A
neural network trained offline with a large amount of SLIP simulation data
is used to encode the foot placement behaviour.

which implement dead-beat like controllers through solv-

ing the running return maps [10]–[13]; and tabular control

methods relying on look-up tables constructed upon the

data generated by comprehensive forward-in-time simula-

tions covering a wide range of SLIP states and parameters

[14]–[16]. Application of the former to online control is

not preferred, due to the non-linear optimization inevitably

involved in the computations. The latter is fast enough

for online implementation since a look-up table can be

constructed offline. However, it is practical only for the range

of parameters using which the look-up table is constructed.

Moreover, the size of the table grows exponentially with

the number of the input variables, which challenges the

generality of the approach.

The present work strives to fill the gap between the non-

linear optimization method and the classical look-up table

method by using a deep neural network. The network is

trained offline with large amount of simulation data based

on the SLIP model to learn its dynamics. Once this most

time-consuming part has been done, the trained network

could be easily deployed online for real-time querying. The

knowledge learned from simulation data are encoded in a

limited number of weight parameters and this parametric

representation does not enlarge with inputs and outputs.

Comparing to the look-up table approach, the interpolation

between data are naturally embedded inside the network.

Having developed an effective data-driven controller for

the SLIP planner, we consider the embedding of the template

behaviors into the whole-body robot. At this stage we need

to focus also on the abstracted out dynamics such as the

touchdown impact and torso stabilization. The former is

known to be a real challenge in control of legged robots in

general and dynamic gaits in particular, as the impact phe-

nomenon is a fuzzy phase of motion. In order to make sure

that the planned template behaviors, which are intentionally

constrained to be energy conservative, remain feasible for

the real robot, we adopt an energy regulation technique that

determines the takeoff moment as the moment at which the

energy lost due to the touchdown impact has been restored.

Application of this takeoff event condition on top of the

previously proposed leg length modulation [17] remarkably

improves the robustness against uncertainties introduced by

the touchdown impact and other unmodeled dynamics in

the planning phase. This takeoff event modulation together

with the CoM reference trajectory and the touchdown angle

tracking, all planned by the controlled SLIP, are mapped into

the whole-body robot through a state-of-the-art QP-based

inverse dynamics controller.

The paper is arranged as follows. In Section II-A, the

SLIP model and its dynamics in stance and flight phase are

described. Section II-B gives details about how the training

data are generated and how it is used to train the neural

network. Section III-A deals with the mapping issue from

template model to whole-body model. Section III-B presents

the formulation of whole-body controller. Simulation results

are presented in Section IV and conclusions are given in

Section V.

II. DEEP NEURAL NETWORK FOR SLIP-LIKE MOTION

EMBEDDING

A. Spring Loaded Inverted Pendulum Model

Fig. 2. The spring-loaded inverted pendulum (SLIP) model. The figure
shows the sequence of events (Apex-TD-TO-Apex) and phases (flight-
stance-flight) involved in one step of running. The leg angle at TD moment
(θTD) decides the evolution of stance and ascending flight phases.

The spring-loaded inverted pendulum (SLIP) model con-

sists of a point mass m and a massless spring with stiffness k
and rest length l0 as shown in Figure 2. Three phases (flight-

stance-flight) are involved in one step of the running motion

and they are separated by touchdown (TD) and takeoff (TO)

events. During flight phase, the mass follows a ballistic

projectile trajectory with the dynamics:
{

ẍ = 0

z̈ = −g
(1)

where (x, z) are the coordinates of the point mass in sagittal

plane, and g is the gravitational acceleration. The massless

leg can be arbitrarily positioned during flight phase in

preparation for the touchdown. At the touchdown moment,

the system switches to stance phase, the point mass follows

the dynamics:
{

mẍ = k[l0(x
2 + z2)−1/2 − 1]x

mz̈ = k[l0(x
2 + z2)−1/2 − 1]z −mg

(2)

Once the leg length l =
√

(x2 + z2) reaches its rest length

l0 during spring extension, the system takes off and enters

the flight phase again.

The apex point (ż = 0) during flight phase is usually

chosen to study the periodic motion of system. At the apex

point, the system state can be described by one variable ẋ
(or z) due to the total energy conservation:

1

2
mẋ2 +mgz ≡ E (3)

where E is the total energy of the system which is conserved

throughout the whole process. Here the velocity ẋ at apex

point is chosen since we are more interested in regulating

the running speed. Given the speed at one apex point, the

system behavior in the ensuing stance and flight phases is

fully determined by the touchdown angle θTD. The next apex

state is a function of current apex state and the touchdown

angle:

ẋn+1 = f(ẋn, θTD,n) (4)

where n denotes the current running step. A one step

deadbeat controller emerges by inverting this apex return

map:

θ∗TD,n = f−1(ẋn, ẋ
∗

n+1) (5)

where θ∗TD,n is the touchdown angle that ensures reaching

the desired velocity ẋ∗

n+1 at the next apex. However, the

hybrid nature of the return map and nonlinearity of stance

phase dynamics (2) exclude the possibility of finding a closed

form solution for this inverse relationship. As such, the

problem of finding θ∗TD,n is inevitably transformed into a

nonlinear optimization problem:

θ∗TD,n = argmin
θ

|ẋ∗

n+1 − f(ẋn, θ)|

s.t. θmin < θ < θmax

(6)

where θ is the touchdown angle to be optimized to bring the

system state at next apex f(ẋn, θ) as close as possible to the

desired one ẋ∗

n+1 respecting the angle limits. Usually, this

time-consuming optimization process can only be conducted

offline, while convergence cannot be guaranteed. These lim-

itations motivate us to explore a different possibility which

better suits the online implementation requirement, that is a

neural-network-based representation for the inverse mapping

(5).

B. Deep Neural Network Controller

The proposed neural network takes the inputs [ẋn, ẋ
∗

n+1]
and outputs the touchdown angle θ∗TD,n. A deep learning

techniques is adopted to train the network offline. The trained

network is then applied online which produces an output for

every possible inputs. Below, we first describe how valid

datasets are generated for training the network and then

present the structure of the neural network and the training

process in detail.

1) Data Generation: The neural network under con-

sideration learns from datasets that comes from apex-to-

apex simulations of the SLIP model as given in (4). Each

simulation produces one dataset. For simplicity, we choose

a constant energy level and all simulations are performed

with this energy level Econs. Given a fixed energy level,

the initial state can be completely determined by an initial

horizontal velocity ẋ0. Together with a touchdown angle θ0,

we can simulate forward the SLIP model to get the next apex

velocity ẋ1 = f(ẋ0, θ0). At this point, a training example has

been generated. A general representation of this process is:

ẋ
(i)
1 = f(ẋ

(i)
0 , θ

(i)
0) (7)

from which a training example (x(i),y(i)) is collected as:
{

x(i) = [ẋ
(i)
0 , ẋ

(i)
1]T

y(i) = [θ
(i)
0]

(8)

where i = 1, 2, ..., n. Repeating this process with a different

initial velocity and touchdown angle, the whole data set can

be collected:

X =









−(x(1))T−
−(x(2))T−

. . .
−(x(n))T−









Y =









y(1)

y(2)

. . .
y(n)









(9)

One thing worth mentioning is that the initial velocity

ẋ
(i)
0 and touchdown angle θ

(i)
0 can be chosen randomly but

should be within reasonable limits. Specifically, touchdown

angle limits are defined as: θ ∈ [0, tan−1(µ)] where µ is

the static friction coefficient. The velocity is limited in the

range [0,
√

2(Econs −mgl0)/m] where the upper bound is

defined with respect to the minimum height (rest length l0),

the slip model can take. Below is the pseudocode used to

generate the training data sets. To be concise, we have not

Algorithm 1: Generating the training data sets

1 X,Y = [], [];

2 for simulation (i=0, i<n, i++) do

3 ẋ
(i)
0 = rand(0,

√

2(Econs −mgl0)/m);

4 θ
(i)
0 = rand(0, tan−1(µ));

5 ẋ
(i)
1 = f(ẋ

(i)
0 , θ

(i)
0) ;

6 x(i) = [ẋ
(i)
0 , ẋ

(i)
1]T ;

7 y(i) = [θ
(i)
0] ;

8 X .insert(x(i)) ;

9 Y .insert(y(i)) ;

10 end

presented the guard functions inside the forward simulation

we used to eliminate those bad data examples such as certain

combination of ẋ
(i)
0 and θ

(i)
0 which leads to negative vertical

velocity at TO moment. In this paper, the parameters used

for training is Econs = 750,m = 85, l0 = 0.8, k = 42500.

A training set of size 30000 is collected and 5% of it has

been used as test set.

2) Neural Network Structure and Training: To learn

the generated data, a fully-connected feed-forward network

(FNN) has been used. Compared to tabular approaches [14]

which check the entry closest to a given input and produce

the associated output, FNN allows to generalize to different

inputs. In addition, it can model non-linear functions by using

non-linear activation functions, improving over the previous

linear methods [18]. For a given input x(i), we can define

the FNN in a recursive way as follows:

hl = fl(Wlhl−1 + bl), ∀l ∈ {1, · · · , L}
with h0 = x(i) and hL = ŷ(i),

(10)

where L is the total number of layers, fl is the activation

function applied on the corresponding layer l, Wl are the

weight matrices, bl are the bias terms, and ŷ(i) is the

predicted output. We can summarize the above equation by

ŷ(i) = fNN (x(i);W) where W = {W1, b1, · · · ,WL, bL}
are the weights that need to be optimized. In our experiments,

our network has 3 hidden layers with 20, 50, and 20 units

respectively. We used ‘relu’ as the non-linear activation func-

tion for each hidden layer. To avoid overfitting, we regularize

our network using dropout. The training was carried out

using the mean-squared loss:

LMSE =

N
∑

i=1

||y(i) − fNN (x(i);W)||2, (11)

along with the Adam optimizer. We trained the network for

100 epochs using a batch size of 128, and a learning rate of

0.0001.

III. MAPPING SLIP-LIKE MOTIONS TO WHOLE-BODY

ROBOT

We now describe how the planned template behaviors are

encoded into the whole-body robot. The humanoid robot used

for the simulations is the WALK-MAN [19]. In simulation

we only use the lower-body of the robot for simplicity but

with the idea in mind that the upper body could improve

the performance by fully utilizing the swing motion of arms

[12].

The Equations of Motion of the robot in the standard form

are given as:

H(q)q̈ +C(q, q̇)q̇ +G(q) = ST
τ τ + JT

c (q)λ (12)

where H(q) is the mass matrix, C(q, q̇)q̇ is the velocity

terms and G(q) is the gravitational forces. λ symbolizes the

ground reaction forces (GRFs) and Jc is the corresponding

contact Jacobian. q = [qT
f , q

T
a]

T represents the generalized

coordinates which include the 6 DoF floating-base coordi-

nates qf and actuated body joint coordinates qa, τ is joint

torques and Sτ = [0na×6, Ina
] is a selection matrix for the

actuated joints.

A. SLIP model to Whole-body Model

The fundamental difference between the template and real

robot models is the inertia distribution. Different from the

SLIP model which can arbitrarily position its mass-less leg

during the flight phase, the swinging movement of heavy

legs of our humanoid robot would cause noticeable change

in the torso orientation. One needs to carefully consider

this in designing the swing leg movement, otherwise the

robot can shortly lose the balance. We avoid this problem

by limiting the movement speed of swing leg at a cost of

velocity regulation speed.

Apart from that, the effect of touchdown impact for the

robot with heavy legs is severe, and it results in considerable

energy loss in each step. Since our SLIP model simulation

is conducted at a certain energy level (3), it is critical to

maintain the same energy level for the robot to ensure

relevant mapping. A number of strategies are proposed to

compensate the energy loss. In [17], an energy correction

law is proposed to inject energy with pre-compressed spring

leg before touchdown based on a pre-computed value of the

energy loss assuming an ideal inelastic impact.

∆Eloss =
1

2
|q̇+THq̇+ − q̇−THq̇−|

=
1

2
q̇−TJT

c (JcH
−1JTc)−1Jcq̇

−

(13)

The resting length of the spring at touchdown is changed

to:

l+0 = l−0 +∆l (14)

where ∆l =
√

2∆Eloss/k. In practice, we find it difficult to

compute an accurate estimation of the energy loss due to the

touchdown timing inaccuracy and impact model mismatch.

The impact is usually modelled as an elastic contact lasting

for a period grater than an instant. As such, techniques

relying merely on feed-forward calculations such as the one

presented above may not guarantee an appropriate energy

regulation. To tackle this issue, we propose a touchdown

energy boost up and takeoff energy cut-off action pair. At

TD instant, extra boost up energy ∆Eboost has been added

so as to make sure that the system will achieve higher energy

level when the leg extends to reach

l+0 = l−0 +∆l +∆lboost (15)

where ∆lboost =
√

2∆Eboost/k is the extra extension due

to boost energy. However, for the TO detection, instead of

checking leg length, energy checking will be used to decide

the TO moment:

TO : E =
1

2
mv2 +mgz > Econs (16)

where Econs is the desired energy level, beyond this level,

the robot switches to flight phase immediately. Applying this

method on the humanoid robot, we are able to bring the

system energy to desired level in one step.

B. Whole-body torque controller

Whole-body dynamics controller receives CoM position,

torso orientation, feet poses and contact state (no support,

left foot support, right foot support, double support) as

inputs and generate joint torques as outputs. Inside the con-

troller, a quadratic programming (QP) problem is formulated

[20] [21] [22] [23] [24]. The optimization variable x =
[q̈T ,λT]T combines generalized acceleration and ground

reaction forces. Joint torques τ can be easily calculated with

(12). The cost function is a weighted combination of multiple

tasks:

min
x

n
∑

i=1

ωi||Qix− ci||
2 (17)

Each task is defined by the corresponding Qi matrix and ci
vector and corresponding weights ωi. During the optimiza-

tion process, several constraints are considered:

Hb(q)q̈ +Cb(q, q̇)q̇ +Gb(q) = JT
cb(q)λ, (18)

Jcq̈ + J̇cq̇ = 0, (19)

τ ∈ [τmin, τmax], (20)

where subscript b in (18) stands for the 6 DoF of floating

base and this constraints ensure the dynamic feasibility. (19)

makes sure there is no slip in contact points, (20) reinforces

joint torque limits. For each contact point, the contact wrench

is defined as λi = [fix, fiy, fiz,mix,miy,miz]
T , where f

and m denote force and torque. The nonlinear friction cone

is approximated as a linear polyhedral cone which limits the

contact force in feasible range with respect to the friction

coefficient µ: |fix/fiz| ≤ µ , |fiy/fiz| ≤ µ. The unilateral

constraints fiz > 0 make sure the robot stays in contact

with the ground. Finally, d−x ≤ miy/fiz ≤ d+x , d−y ≤
−mix/fiz ≤ d+y restricts the ZMP inside support polygon

which is a rectangle defined within the limits [d−x , d
+
x] and

[d−y , d
+
y] based on the foot geometry.

Tracking of main tasks such as centroidal dynamics [25]

(CoM tracking and angular momentum dissipation) and body

position and orientation tracking are explained below. The

whole-body linear momentum lG and angular momentum

kG are commanded with PD control laws:
{

l̇ref
G = m(p̈des

G +Kl
p(p

des
G − pG) +Kl

d(ṗ
des
G − ṗG))

k̇ref
G = −Kk

dkG.
(21)

where pdes
G , ṗdes

G and p̈des
G are desired CoM position, velocity

and acceleration which come from the template model trajec-

tory. pG and ṗG denote the current state of the CoM. Kl
p and

Kl
d are the feedback gains. For the angular momentum part

kG, we only dissipate it and Kk
d is the damping coefficient

and kG is the current angular momentum of the robot.

For any interested part of the robot, its position and

orientation can be also tracked through PD control laws:
{

p̈ref = p̈des +Kp
p (p

des − p) +K
p
d(ṗ

des − ṗ)

ω̇ref = ω̇des +Kω
p log(R

desRT) +Kω
d (ω

des − ω)
(22)

where pdes, ṗdes and p̈des are respectively the desired position,

velocity and acceleration which come from the template

model. Rdes, ωdes and ω̇des are respectively the desired ori-

entation, angular velocity and angular acceleration. p and ṗ

denote the current position and velocity. R and ω are current

orientation and current angular velocity. log(Rdes
F RT

F) is

the logarithm of a orientation matrix which gives the error

between the desired and current orientation [26].

IV. SIMULATION

The simulation environment used in this paper is Gazebo +

ROS (Robot Operating System). The default physics engine

ODE (Open Dynamics Engine) has been chosen to simulate

the whole-body robot. The control loop runs at 1 kHz and

control commands are sent to Gazebo through ROS. Two

dimensional sagittal plane hopping has been simulated first

to verify the proposed method. After that, running in three

dimensional space has been conducted by composing two

template models [27].

A. Hopping in Sagittal Plane

Fig. 3. Snapshot of sagittal plane hopping. The green sphere represents
the CoM of the whole-body robot. The three green traces show the history
of CoM and center points of the feet. Two states (Stance and Flight) and
two events (TD and TO) are involved.

The hopping motion in sagittal plane can be well ap-

proximated by a two dimensional SLIP model. Two phases

involved in the motion: stance phase and flight phase. A state

machine has been employed to monitor the phase transitions.

It is constantly checking TO or TD event to trigger the

corresponding transition. TD happens when the feet touch

the ground. Different checking methods (feet height, force-

torque sensor) may trigger the transition at varying moment.

Thanks to the energy boost and cut-off (15) (16) correction,

the robot could end up with the same TO energy level.

Tasks involved in each phase are different. The whole-

body controller will switch between the various tasks based

on the state machine.

During the stance phase, tasks being closely tracked are:

centroidal dynamics (21), torso orientation regulation (22)

and ground reaction force distribution (equal distribution

between the feet). For the feet, no specified goals are given,

they adapt to the ground due to the non-slip constraints (19).

At the TD moment, the high level controller will forward

simulate once with the SLIP model (rest length modified for

energy injection purpose) to get the whole CoM trajectory

during the following stance phase. This CoM trajectory is

then been used as desired tracking trajectory for the whole-

body controller.

During the flight phase, the robot is under-actuated. The

system CoM follows a ballistic trajectory. The only task

to be controlled is the foot placement. In this work, no

trajectories are specifically designed for the feet. The foot

placement targets with respect to CoM are calculated from

the touchdown angle provided by the trained neural network:
{

Gxf = l0 sin(θTD)
Gzf = l0 cos(θTD)

(23)

For accurate velocity tracking, on top of the touchdown

angle provided by the trained neural network, an simple PID

controller has been added:

θTD = θff + θfb

= fNN ([ẋ, ẋ∗]) + PID(ẋ− ẋ∗)
(24)

where θTD is the reference touchdown angle sent to the

whole-body controller which is composed of a feed-forward

term θff and a feedback term θfb. ẋ is the current CoM

velocity and ẋ∗ is the desired one during the next flight

phase.

For this sagittal plane hopping case, the goal is to regulate

the forward speed to 1.0 m/s. The robot is released from

a 0.85 m height in the air and with an initial velocity of

0.3 m/s in x direction. It directly enters flight phase after

releasing. These initial states are chosen rather randomly

without special calculation. The CoM velocity recorded from

the simulation is plotted in Figure 4. As a comparison, we

also plot the data recorded from another simulation in which

the Raibert foot placement controller has been used [28].

Theoretically, the SLIP model should be able to regulate to

any achievable velocity in one step. However, this ability

is limited by the touchdown angle range and also by the

kinematic limits and actuation limits presented in the whole-

body robot. In spite of that, it can be seen that the neural

network controller took fewer steps to reach the desired

velocity and also with less regulation error. In both cases,

the energy correction law successfully regulate the energy to

the desired level within one step. The results also prove its

generality.

B. Running

Running is a three dimensional movement. In the previ-

ous section, the two-dimensional case has demonstrated the

effectiveness of the neural network controller. To extend it

to three dimensional space, two possibilities are: 1) com-

posing two two-dimensional SLIP model to generate three

dimensional running. 2) considering the 3D-SLIP model.

The later one requires generating new simulation data and

train a new neural network with expanded input and output

dimensions. In this paper, we adopt the former idea. Without

any modification of the trained neural network, we directly

apply it to the lateral plane motion. Actually, observing the

Fig. 4. Sagittal plane hopping CoM velocity. On the left side is the results
from the neural network controller, and the right one comes from the Raibert
controller. In both cases, the robot are released from the same height of 0.85
m with a forward velocity of 0.3 m/s. The target velocity is 1 m/s.

Fig. 5. Sagittal Plane Hopping Energy Level. Results come from different
controllers but the same energy regulation law. The left one is our neural
network controller and the right one is the Raibert controller

training data, a large amount of simulation ends up with

reversed TO velocity comparing to the initial velocity which

is exactly the case of lateral hopping motion. Therefore,

running is treated as a hopping motion composed of sagittal

hopping and lateral hopping, each component is governed by

a two-dimensional SLIP model. These two template models

are synchronized by a state machine as shown in Figure 6.

Tasks controlled in single stance phase are: centroidal dy-

namics, torso orientation and swing foot placement tracking.

For the stance foot, no specified goals are given, it adapts to

the ground due to the non-slip constraints (19). No ground

reaction force distribution is needed since all forces comes

from the single stance foot. In flight phase, only the foot

preparing for landing is paid more attention to and it is

controlled carefully to track the touchdown angle provided

by neural network. The other foot stays in idle mode in

horizontal direction and only keeps a clearance between itself

and the ground. Additionally, any foot in the air is always

controlled to be parallel to the ground.

Again, the CoM velocity results are compared between

the neural network controller and the Raibert controller are

shown in Figure 7. The neural network controller shows

better regulation speed and less steady state error.

V. CONCLUSION

In this paper we proposed to use a deep neural network

to encode the dynamics of a simple template model and

then map to the whole-body robot. Different from the non-

linear optimization based approach or the classical tabular

method, it transfers most of the computations offline. Once

trained, the query of learned knowledge is very fast and can

Fig. 6. Snapshot of running. The green sphere stands for the CoM position
of the robot. The three green traces represent the history of CoM and center
points of the feet. State machine includes three states: Flight, Left Stance,
Right Stance. Two events (TO and TD) trigger the transition between these
states.

Fig. 7. Running CoM velocity plot. Results from composed neural
network controller (left) and composed Raibert controller (right). The robot
is released from the height of 0.85 m with a forward velocity of 0.2 m/s.
After three steps it regulates to desired velocity 1.5 m/s.

be embedded into real-time control framework. The two-

dimensional SLIP model long-term dynamics (return map)

has been successfully learned by the neural network. The

approach itself is general and not limited to this 2D case

with low-dimensional inputs and outputs. In future work,

we plan to add more freedoms to this model, for example

energy level changes, varying leg stiffness. More interesting

extension would be the 3D-SLIP model.

ACKNOWLEDGMENT

This work is supported by the European Horizon 2020

robotics program CogIMon (ICT-23-2014 under grant agree-

ment 644727).

REFERENCES

[1] R. J. Full and D. E. Koditschek, “Templates and anchors: neu-
romechanical hypotheses of legged locomotion on land,” Journal of

Experimental Biology, vol. 202, no. 23, pp. 3325–3332, 1999.

[2] R. Alexander and A. Jayes, “Vertical movements in walking and
running,” Journal of Zoology, vol. 185, no. 1, pp. 27–40, 1978.

[3] R. Blickhan and R. Full, “Similarity in multilegged locomotion:
bouncing like a monopode,” Journal of Comparative Physiology A:

Neuroethology, Sensory, Neural, and Behavioral Physiology, vol. 173,
no. 5, pp. 509–517, 1993.

[4] H. Geyer, A. Seyfarth, and R. Blickhan, “Compliant leg behaviour
explains basic dynamics of walking and running,” Proceedings of the

Royal Society B: Biological Sciences, vol. 273, no. 1603, pp. 2861–
2867, 2006.

[5] M. Ahmadi and M. Buehler, “Controlled passive dynamic running ex-
periments with the ARL-monopod II,” IEEE Transactions on Robotics,
vol. 22, no. 5, pp. 974–986, 2006.

[6] U. Saranli, M. Buehler, and D. E. Koditschek, “RHex: A simple and
highly mobile hexapod robot,” The International Journal of Robotics

Research, vol. 20, no. 7, pp. 616–631, 2001.

[7] R. Playter, M. Buehler, and M. Raibert, “BigDog,” in Pro. of SPIE

6230, Unmanned Systems Technology VIII, pp. 62302O–62302O,
2006.

[8] J. A. Grimes and J. W. Hurst, “The design of ATRIAS 1.0 a unique
monoped, hopping robot,” in Proceedings of the 2012 International

Conference on Climbing and Walking Robots and the Support Tech-

nologies for Mobile Machines, pp. 548–554, 2012.

[9] M. H. Raibert et al., Legged robots that balance, vol. 3. MIT press
Cambridge, MA, 1986.

[10] W. J. Schwind, Spring loaded inverted pendulum running: a plant

model. PhD thesis, Electrical Enginnering: Systems, University of
Michigan, 1998.

[11] A. Wu and H. Geyer, “The 3-d spring–mass model reveals a time-
based deadbeat control for highly robust running and steering in
uncertain environments,” IEEE Transactions on Robotics, vol. 29,
no. 5, pp. 1114–1124, 2013.

[12] P. M. Wensing and D. E. Orin, “High-speed humanoid running through
control with a 3d-slip model,” in Intelligent Robots and Systems

(IROS), 2013 IEEE/RSJ International Conference on, pp. 5134–5140,
IEEE, 2013.

[13] S. G. Carver, N. J. Cowan, and J. M. Guckenheimer, “Lateral stability
of the spring-mass hopper suggests a two-step control strategy for
running,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 19, no. 2, p. 026106, 2009.

[14] M. H. Raibert and F. C. Wimberly, “Tabular control of balance in
a dynamic legged system,” IEEE Transactions on systems, man, and

Cybernetics, no. 2, pp. 334–339, 1984.

[15] D. Koepl and J. Hurst, “Force control for planar spring-mass running,”
in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ Interna-

tional Conference on, pp. 3758–3763, IEEE, 2011.

[16] H. Herr, A. Seyfarth, and H. Geyer, “Speed-adaptive control scheme
for legged running robots,” Nov. 13 2007. US Patent 7,295,892.

[17] M. Hutter, C. D. Remy, M. A. Höpflinger, and R. Siegwart, “Slip run-
ning with an articulated robotic leg,” in Intelligent Robots and Systems

(IROS), 2010 IEEE/RSJ International Conference on, pp. 4934–4939,
IEEE, 2010.

[18] Y. You, Z. Li, D. G. Caldwell, and N. G. Tsagarakis, “From one-legged
hopping to bipedal running and walking: A unified foot placement
control based on regression analysis,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 4492–4497, IEEE,
2015.

[19] N. G. Tsagarakis, D. G. Caldwell, F. Negrello, W. Choi, L. Baccelliere,
V. Loc, J. Noorden, L. Muratore, A. Margan, A. Cardellino, et al.,
“Walk-man: A high-performance humanoid platform for realistic en-
vironments,” Journal of Field Robotics, 2016.

[20] B. J. Stephens and C. G. Atkeson, “Dynamic balance force control
for compliant humanoid robots,” in Intelligent Robots and Systems

(IROS), 2010 IEEE/RSJ International Conference on, pp. 1248–1255,
IEEE, 2010.

[21] P. M. Wensing and D. E. Orin, “Generation of dynamic humanoid
behaviors through task-space control with conic optimization,” in
Robotics and Automation (ICRA), 2013 IEEE International Conference

on, pp. 3103–3109, IEEE, 2013.

[22] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson, “Optimization
based full body control for the atlas robot,” in Humanoid Robots

(Humanoids), 2014 14th IEEE-RAS International Conference on,
pp. 120–127, IEEE, 2014.

[23] C. G. A. Salman Faraji, Soha Pouya and A. J. Ijspeert, “Versatile
and robust 3d walking with a simulated humanoid robot (atlas) a
model predictive control approach,” IEEE International Conference

on Robotics and Automation, 2014.

[24] A. Herzog, L. Righetti, F. Grimminger, P. Pastor, and S. Schaal, “Bal-
ancing experiments on a torque-controlled humanoid with hierarchical
inverse dynamics,” in 2014 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pp. 981–988, IEEE, 2014.

[25] D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a
humanoid robot,” Autonomous Robots, vol. 35, no. 2-3, pp. 161–176,
2013.

[26] R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry, A mathematical

introduction to robotic manipulation. CRC press, 1994.
[27] A. De and D. E. Koditschek, “Averaged anchoring of decoupled

templates in a tail-energized monoped,” in Robotics Research, pp. 269–
285, Springer, 2018.

[28] M. H. Raibert, H. B. Brown Jr, and M. Chepponis, “Experiments in
balance with a 3d one-legged hopping machine,” The International

Journal of Robotics Research, vol. 3, no. 2, pp. 75–92, 1984.

View publication statsView publication stats

https://www.researchgate.net/publication/327573083

