15 research outputs found

    Characterizing Hydrological Connectivity of Artificial Ditches in Zoige Peatlands of Qinghai-Tibet Plateau

    Get PDF
    Peats have the unique ability of effectively storing water and carbon. Unfortunately, this ability has been undermined by worldwide peatland degradation. In the Zoige Basin, located in the northeastern Qinghai-Tibet Plateau, China, peatland degradation is particularly severe. Although climate change and (natural and artificial) drainage systems have been well-recognized as the main factors catalyzing this problem, little is known about the impact of the latter on peatland hydrology at larger spatial scales. To fill this gap, we examined the hydrological connectivity of artificial ditch networks using Google Earth imagery and recorded hydrological data in the Zoige Basin. After delineating from the images of 1392 ditches and 160 peatland patches in which these ditches were clustered, we calculated their lengths, widths, areas, and slopes, as well as two morphological parameters, ditch density (Dd) and drainage ability (Pa). The subsequent statistical analysis and examination of an index defined as the product Ddand Pa showed that structural hydrological connectivity, which was quantitatively represented by the value of this index, decreased when peatland patch areas increased, suggesting that ditches in small patches have higher degrees of hydrological connectivity. Using daily discharge data from three local gauging stations and Manning’s equation, we back-calculated the mean ditch water depths (Dm) during raining days of a year and estimated based on Dm the total water volume drained from ditches in each patch (V) during annual raining days. We then demonstrated that functional hydrological connectivity, which may be represented by V, generally decreased when patch areas increased, more sensitive to changes of ditch number and length in larger peatland patches. Furthermore, we found that the total water volume drained from all ditches during annual raining days only took a very small proportion of the total volume of stream flow out of the entire watershed (0.0012%) and this nature remained similar for the past 30 years, suggesting that during annual rainfall events, water drained from connected ditches is negligible. This revealed that the role of connected artificial ditches in draining peatland water mainly takes effect during the prolonged dry season of a year in the Zoige Basi

    Variation among 532 genomes unveils the origin and evolutionary history of a global insect herbivore

    Get PDF
    The diamondback moth, Plutella xylostella is a cosmopolitan pest that has evolved resistance to all classes of insecticide, and costs the world economy an estimated US $4-5 billion annually. We analyse patterns of variation among 532 P. xylostella genomes, representing a worldwide sample of 114 populations. We find evidence that suggests South America is the geographical area of origin of this species, challenging earlier hypotheses of an Old-World origin. Our analysis indicates that Plutella xylostella has experienced three major expansions across the world, mainly facilitated by European colonization and global trade. We identify genomic signatures of selection in genes related to metabolic and signaling pathways that could be evidence of environmental adaptation. This evolutionary history of P. xylostella provides insights into transoceanic movements that have enabled it to become a worldwide pest.Minsheng You … Simon W. Baxter … Christopher M. Ward … et al

    Characterizing Hydrological Connectivity of Artificial Ditches in Zoige Peatlands of Qinghai-Tibet Plateau

    No full text
    Peats have the unique ability of effectively storing water and carbon. Unfortunately, this ability has been undermined by worldwide peatland degradation. In the Zoige Basin, located in the northeastern Qinghai-Tibet Plateau, China, peatland degradation is particularly severe. Although climate change and (natural and artificial) drainage systems have been well-recognized as the main factors catalyzing this problem, little is known about the impact of the latter on peatland hydrology at larger spatial scales. To fill this gap, we examined the hydrological connectivity of artificial ditch networks using Google Earth imagery and recorded hydrological data in the Zoige Basin. After delineating from the images of 1392 ditches and 160 peatland patches in which these ditches were clustered, we calculated their lengths, widths, areas, and slopes, as well as two morphological parameters, ditch density (Dd) and drainage ability (Pa). The subsequent statistical analysis and examination of an index defined as the product Dd and Pa showed that structural hydrological connectivity, which was quantitatively represented by the value of this index, decreased when peatland patch areas increased, suggesting that ditches in small patches have higher degrees of hydrological connectivity. Using daily discharge data from three local gauging stations and Manning’s equation, we back-calculated the mean ditch water depths (Dm) during raining days of a year and estimated based on Dm the total water volume drained from ditches in each patch (V) during annual raining days. We then demonstrated that functional hydrological connectivity, which may be represented by V, generally decreased when patch areas increased, more sensitive to changes of ditch number and length in larger peatland patches. Furthermore, we found that the total water volume drained from all ditches during annual raining days only took a very small proportion of the total volume of stream flow out of the entire watershed (0.0012%) and this nature remained similar for the past 30 years, suggesting that during annual rainfall events, water drained from connected ditches is negligible. This revealed that the role of connected artificial ditches in draining peatland water mainly takes effect during the prolonged dry season of a year in the Zoige Basin

    The Role of Insect Cytochrome P450s in Mediating Insecticide Resistance

    No full text
    In many organisms, cytochrome P450 enzymes are the primary detoxifying enzymes. Enhanced P450 activity can be mediated by the emergence of new genes, increased transcription due to mutations in the promoter regions, changes in enzyme structures and functions due to mutations in protein-coding regions, or changes in post-translational modifications; all of these changes are subject to insecticide selection pressure. Multiple signalling pathways and key effector molecules are involved in the regulation of insect P450s. Increased P450 activity is a key mechanism inducing insect resistance. Hence, downregulation of selected P450s is a promising strategy to overcome this resistance. Insect P450 inhibitors that act as insecticide synergists, RNA interference to induce P450 gene silencing, and the use of transgenic insects and crops are examples of strategies utilized to overcome resistance. This article reviews the latest advances in studies related to insect P450s-mediated agrochemical resistance, with focuses on the regulatory mechanisms and associated pest management strategies. Future investigations on the comprehensive regulatory pathways of P450-mediated detoxification, identification of key effectors, and downregulation strategies for P450s will ecologically, economically, and practically improve pest management

    The Potential Role of the Methionine Aminopeptidase Gene <i>PxMetAP1</i> in a Cosmopolitan Pest for <i>Bacillus thuringiensis</i> Toxin Tolerance

    No full text
    Methionine aminopeptidases (MetAPs) catalyze the cleavage of the N-terminal initiator methionine (iMet) in new peptide chains and arylamides, which is essential for protein and peptide synthesis. MetAP is differentially expressed in two diamondback moth (DBM; Plutella xylostella) strains: the G88 susceptible strain and the Cry1S1000 strain, which are resistant to the Bt toxin Cry1Ac, implicating that MetAP expression might be associated with Bt resistance. In this study, we identified and cloned a MetAP gene from DBMs, named PxMetAP1, which has a CDS of 1140 bp and encodes a 379 amino acid protein. The relative expression of PxMetAP1 was found to be ~2.2-fold lower in the Cry1S1000 strain compared to that in the G88 strain. PxMetAP1 presents a stage- and tissue-specific expression pattern, with higher levels in the eggs, adults, integument, and fatbody of DBMs. The linkage between PxMetAP1 and Cry1Ac resistance is verified by genetic linkage analysis. The knockout of PxMetAP1 in G88 by CRISPR/Cas9 leads to a ~5.6-fold decrease in sensitivity to the Cry1Ac toxin, further supporting the association between the PxMetAP1 gene and Bt tolerance. Our research sheds light on the role of MetAP genes in the development of Bt tolerance in P. xylostella and enriches the knowledge for the management of such a cosmopolitan pest

    Multi-Functional and Highly Conductive Textiles With Ultra-High Durability Through \u27Green\u27 Fabricaiton Process

    No full text
    © 2020 Elsevier B.V. Conductive textiles with mechanical flexibility, long-term durability and stability under harsh conditions are highly desired for potential applications in wearable electronics and devices. One challenge associated with the development of such materials is their fabrication method, which requires to be low-cost, scalable, and environmental-friendly. Herein, we developed a full “green” route to fabricate machine-washable conductive textiles by coating textiles with a novel crosslinked and conductive polymer composite coating, using single-walled carbon nanotubes (SWNTs) and bio-mass derived glucaric acid/chitosan (GA-chitosan) organic salt aqueous solution with dip-coating or spray-coating. The crosslinked SWNTs/GA-chitosan polyamide coatings exhibit a high electrical conductivity of up to 7.4 × 102 S/m and high water/organic solvents resistance. The conductive textiles can achieve an exceptional Joule heating performance driven by moderate voltage and exhibit a high electromagnetic interference shielding efficiency of approximately 30 dB at X-band under optimized formulation. The high adhesive energy between the polymer composite coatings and textile substrates enables the ultra-high durability and stability of textiles, confirmed by mechanical deformation, rubbing, and washing tests. This simple and organic solvent-free processing method provides an environmentally friendly, cost-effective fabrication approach, holding great promise for large-scale production of multifunctional conductive wearable textiles for EMI shielding and/or personal heating applications

    Anatomical relation between S1 sacroiliac screws’ entrance points and superior gluteal artery

    No full text
    Abstract Background To conduct radiologic anatomical study on the relation between S1 sacroiliac screws’ entry points and the route of the pelvic outer superior gluteal artery branches with the aim to provide the anatomical basis and technical reference for the avoidance of damage to the superior gluteal artery during the horizontal sacroiliac screw placement. Methods Superior gluteal artery CTA (CT angiography) vascular imaging of 74 healthy adults (37 women and 37 men) was done with 128-slice spiral CT (computed tomography). The CT attendant-measuring software was used to portray the “safe bony entrance area” (hereinafter referred to as “Safe Area”) of the S1 segment in the standard lateral pelvic view of three-dimensional reconstruction. The anatomical relation between S1 sacroiliac screws’ Safe Area and the pelvic outer superior gluteal artery branches was observed and recorded. The number of cases in which artery branches intersected the Safe Area was counted. The cases in which superior gluteal artery branches disjointed from the Safe Area were identified, and the shortest distance between the Safe Area and the superior gluteal artery branch closest to the Safe Area was measured. Results Three cases out of the 74 sample cases were excluded from this study as they were found to have no bony space for horizontal screw placement in S1 segment. Among the remaining 71 sample cases, there are 32 cases (45.1%) where the deep superior branch of superior gluteal artery passes through the Safe Area of S1 entrance point. There was no distinguishing feature and rule on how the deep superior branches and the Safe Area overlapped. In the 39 cases in which superior gluteal artery branches disjointed from the Safe Area, the deep superior branches of superior gluteal artery were the branches closest to the Safe Area and the part of the branch closest to the Safe Area was located in front of the widest part of the Safe Area. The shortest distance between the deep superior branch and the Safe Area is 0.86 ± 0.84 cm. Conclusion There is a high risk of accidental injury of the deep superior branches of superior gluteal artery in the process of S1 sacroiliac screw placement. Even if the entry points are located in the safe bony entrance area, the absolute secure placement cannot be assured. We suggest that great attention should be paid to make thorough preoperative plans
    corecore