1,730 research outputs found
The molecular structure of isocyanic acid from microwave and infra-red absorption spectra
Experimental investigations of the infra-red and microwave spectra of the slightly asymmetric rotor, HNCO, have been made, and the structure of the molecule has been determined
Liquid-immersible electrostatic ultrasonic transducer
A broadband megahertz range electrostatic acoustic transducer for use in a liquid environment is described. A liquid tight enclosure includes a metallic conducting membrane as part of its outside surface and has a means inside the liquid tight enclosure for applying a tension to the membrane and for mounting an electrode such that the flat end of the electrode is aproximately parallel to the membrane. The invention includes structure and a method for ensuring that the membrane and the flat end of the electrode are exactly parallel and a fixed predetermined distance from each other
A Search for Near-Infrared Emission From the Halo of NGC 5907 at Radii of 10 kpc to 30 kpc
We present a search for near-infrared (3.5-5 micron) emission from baryonic
dark matter in the form of low-mass stars and/or brown dwarfs in the halo of
the nearby edge-on spiral galaxy NGC 5907. The observations were made using a
256 by 256 InSb array with a pixel scale of 17" at the focus of a
liquid-helium-cooled telescope carried above the Earth's atmosphere by a
sounding rocket. In contrast to previous experiments which have detected a halo
around NGC 5907 in the V, R, I, J and K bands at galactic radii 6kpc < r <
10kpc, our search finds no evidence for emission from a halo at 10kpc < r <
30kpc. Assuming a halo mass density scaling as r^(-2), which is consistent with
the flat rotation curves that are observed out to radii of 32kpc, the lower
limit of the mass-to-light ratio at 3.5-5 microns for the halo of NGC 5907 is
250 (2 sigma) in solar units. This is comparable to the lower limit we have
found previously for NGC 4565 (Uemizu et al. 1998). Based on recent models, our
non-detection implies that hydrogen- burning stars contribute < 15% of the mass
of the dark halo of NGC 5907. Our results are consistent with the previous
detection of extended emission at r < 10kpc if the latter is caused by a
stellar population that has been ejected from the disk because of tidal
interactions. We conclude that the dark halo of NGC 5907, which is evident from
rotation curves that extend far beyond 10kpc, is not comprised of hydrogen
burning stars.Comment: 12 pages, LateX, plus 6 ps figures. Accepted by ApJ. minor changes,
added references, corrected typo
XUV Frequency Combs via Femtosecond Enhancement Cavities
We review the current state of tabletop extreme ultraviolet (XUV) sources
based on high harmonic generation (HHG) in femtosecond enhancement cavities
(fsEC). Recent developments have enabled generation of high photon flux (1014
photons/sec) in the XUV, at high repetition rates (>50 MHz) and spanning the
spectral region from 40 nm - 120 nm. This level of performance has enabled
precision spectroscopy with XUV frequency combs and promises further
applications in XUV spectroscopic and photoemission studies. We discuss the
theory of operation and experimental details of the fsEC and XUV generation
based on HHG, including current technical challenges to increasing the photon
flux and maximum photon energy produced by this type of system. Current and
future applications for these sources are also discussed.Comment: invited review article, 38 page
Automatic wheeze detection based on auditory modelling
Automatic wheeze detection has several potential benefits compared with reliance on human auscultation: it is experience independent, an automated historical record can easily be kept, and it allows quantification of wheeze severity. Previous attempts to detect wheezes automatically have had partial success but have not been reliable enough to become widely accepted as a useful tool. In this paper an improved algorithm for automatic wheeze detection based on auditory modelling is developed, called the frequency- and duration-dependent threshold algorithm. The mean frequency and duration of each wheeze component are obtained automatically. The detected wheezes are marked on a spectrogram. In the new algorithm, the concept of a frequency- and duration-dependent threshold for wheeze detection is introduced. Another departure from previous work is that the threshold is based not on global power but on power corresponding to a particular frequency range. The algorithm has been tested on 36 subjects, 11 of whom exhibited characteristics of wheeze. The results show a marked improvement in the accuracy of wheeze detection when compared with previous algorithms
Integrated Analysis of Production Potential and Profitability of a Horizontal Well in the Lower Glen Rose Formation, Maverick County, Texas
The U.S. Department of Energy/Morgantown Energy Technology Center (DOE/METC) awarded a contract in 1991 to Prime Energy Corporation (PEC) to demonstrate the benefit of using horizontal wells to recover gas from low permeability formations. The project area was located in the Chittim field of Maverick County, Texas. The Lower Glen Rose Formation in the Chittim field was a promising horizontal well candidate based on the heterogenous nature of the reservoir (suggested by large well-to-well variances in reserves) and the low percentage of economical vertical wells. Since there was substantial evidence of reservoir heterogeneity, it was unknown whether the selected, wellsite would penetrate a reservoir with the desired properties for a horizontal well. Thus, an integrated team was formed to combine geologic analysis, seismic interpretation, reservoir engineering, reservoir simulation, and economic assessment to analyze the production potential and profitability of completing a horizontal well in the Lower Glen Rose formation
Gamma-Ray Burst afterglow scaling coefficients for general density profile
Gamma-ray burst (GRB) afterglows are well described by synchrotron emission
originating from the interaction between a relativistic blast wave and the
external medium surrounding the GRB progenitor. We introduce a code to
reconstruct spectra and light curves from arbitrary fluid configurations,
making it especially suited to study the effects of fluid flows beyond those
that can be described using analytical approximations. As a check and first
application of our code we use it to fit the scaling coefficients of
theoretical models of afterglow spectra. We extend earlier results of other
authors to general circumburst density profiles. We rederive the physical
parameters of GRB 970508 and compare with other authorsComment: 11 pages, 5 figures. Revised edition removes references to unphysical
chromatic break and adds appendix on hot region directly behind shoc
rp-Process weak-interaction mediated rates of waiting-point nuclei
Electron capture and positron decay rates are calculated for
neutron-deficient Kr and Sr waiting point nuclei in stellar matter. The
calculation is performed within the framework of pn-QRPA model for rp-process
conditions. Fine tuning of particle-particle, particle-hole interaction
parameters and a proper choice of the deformation parameter resulted in an
accurate reproduction of the measured half-lives. The same model parameters
were used to calculate stellar rates. Inclusion of measured Gamow-Teller
strength distributions finally led to a reliable calculation of weak rates that
reproduced the measured half-lives well under limiting conditions. For the
rp-process conditions, electron capture and positron decay rates on Kr
and Sr are of comparable magnitude whereas electron capture rates on
Sr and Kr are 1--2 orders of magnitude bigger than the
corresponding positron decay rates. The pn-QRPA calculated electron capture
rates on Kr are bigger than previously calculated. The present
calculation strongly suggests that, under rp-process conditions, electron
capture rates form an integral part of weak-interaction mediated rates and
should not be neglected in nuclear reaction network calculations as done
previously.Comment: 13 pages, 4 figures, 4 tables; Astrophysics and Space Science (2012
- …