13 research outputs found

    Ab initio GW plus cumulant calculation for isolated band systems: Application to organic conductor (TMTSF)2PF6 and transition-metal oxide SrVO3

    Get PDF
    We present ab initio GW plus cumulant-expansion calculations for an organic compound (TMTSF)2PF6 and a transition-metal oxide SrVO3. These materials exhibit characteristic low-energy band structures around the Fermi level, which bring about interesting low-energy properties; the low-energy bands near the Fermi level are isolated from the other bands, and, in the isolated bands, unusually low-energy plasmon excitations occur. To study the effect of this low-energy-plasmon fluctuation on the electronic structure, we calculate spectral functions and photoemission spectra using the ab initio cumulant expansion of the Green’s function based on the GW self-energy. We found that the low-energy plasmon fluctuation leads to an appreciable renormalization of the low-energy bands and a transfer of the spectral weight into the incoherent part, thus resulting in an agreement with experimental photoemission data

    Spin density functional study on magnetism of potassium loaded Zeolite A

    Full text link
    In order to clarify the mechanism of spin polarization in potassium-loaded zeolite A, we perform {\em ab initio} density-functional calculations. We find that (i) the system comprising only non-magnetic elements (Al, Si, O and K) can indeed exhibit ferromagnetism, (ii) while the host cage makes a confining quantum-well potential in which ss- and pp-like states are formed, the potassium-4ss electrons accommodated in the p-states are responsible for the spin polarization, and (iii) the size of the magnetic moment sensitively depends on the atomic configuration of the potassium atoms. We show that the spin polarization can be described systematically in terms of the confining potential and the crystal field splitting of the p-states

    Wannier90 as a community code: new features and applications

    Get PDF
    Wannier90 is an open-source computer program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch states. It is interfaced to many widely used electronic-structure codes thanks to its independence from the basis sets representing these Bloch states. In the past few years the development of Wannier90 has transitioned to a community-driven model; this has resulted in a number of new developments that have been recently released in Wannier90 v3.0. In this article we describe these new functionalities, that include the implementation of new features for wannierisation and disentanglement (symmetry-adapted Wannier functions, selectively-localised Wannier functions, selected columns of the density matrix) and the ability to calculate new properties (shift currents and Berry-curvature dipole, and a new interface to many-body perturbation theory); performance improvements, including parallelisation of the core code; enhancements in functionality (support for spinor-valued Wannier functions, more accurate methods to interpolate quantities in the Brillouin zone); improved usability (improved plotting routines, integration with high-throughput automation frameworks), as well as the implementation of modern software engineering practices (unit testing, continuous integration, and automatic source-code documentation). These new features, capabilities, and code development model aim to further sustain and expand the community uptake and range of applicability, that nowadays spans complex and accurate dielectric, electronic, magnetic, optical, topological and transport properties of materials.The WDG acknowledges financial support from the NCCR MARVEL of the Swiss National Science Foundation, the European Union’s Centre of Excellence E-CAM (Grant No. 676531), and the Thomas Young Centre for Theory and Simulation of Materials (Grant No. TYC-101).Peer reviewe

    Ab initio

    No full text
    corecore