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We present ab initio GW plus cumulant-expansion calculations for an organic compound (TMTSF)2PF6 and
a transition-metal oxide SrVO3. These materials exhibit characteristic low-energy band structures around the
Fermi level, which bring about interesting low-energy properties; the low-energy bands near the Fermi level are
isolated from the other bands, and, in the isolated bands, unusually low-energy plasmon excitations occur. To
study the effect of this low-energy-plasmon fluctuation on the electronic structure, we calculate spectral functions
and photoemission spectra using the ab initio cumulant expansion of the Green’s function based on the GW

self-energy. We found that the low-energy plasmon fluctuation leads to an appreciable renormalization of the
low-energy bands and a transfer of the spectral weight into the incoherent part, thus resulting in an agreement
with experimental photoemission data.

DOI: 10.1103/PhysRevB.93.085124

I. INTRODUCTION

An important aspect of condensed-matter physics and mate-
rials science is understanding low-energy electronic structures
and excitations in real materials. Interesting phenomena such
as non-Fermi-liquid behavior and unconventional supercon-
ductivity are due to the instability of electronic structures near
the Fermi level. A common feature is often found in band struc-
tures exhibiting such phenomena; isolated bands appear near
the Fermi level. The width of these isolated bands is typically
of the order of 1 eV, which is comparable to local electronic
interactions. Thus, in these isolated bands, kinetic and potential
energies compete with each other, and the competition is
often discussed within a local-interaction approximation, as
in the Hubbard model. In real materials, however, there
exist various elemental excitations not described by the local
electronic interaction. A plasmon in a metallic system or an
exciton in an insulating system is a well-known example of
such nonlocal excitation, which results from the long-range
Coulomb interaction. In the above-mentioned isolated-band
systems, plasmon excitation can occur in this band, and its
energy scale can be very small (of the order of 1 eV), which is
comparable to the bandwidth and the size of the local Coulomb
interaction.

In this study, we investigate the effect of low-energy
plasmon fluctuation on the electronic structure of real isolated-
band systems from first principles. For this purpose, we
choose two materials: a quasi-one-dimensional organic con-
ductor (TMTSF)2PF6 (Refs. [1–4]), where TMTSF stands
for tetramethyltetraselenafulvalene, and a three-dimensional
perovskite transition-metal oxide SrVO3 (Refs. [5–7]). These
materials are typical isolated-band systems, and they are
studied as benchmark materials of correlated metal, for which
the local Coulomb-interaction effect on electronic properties
is investigated with much interest [3,5–7]. In the present work,
we focus on the low-energy plasmon effect on electronic
structure [8,9]. Through a comparison between theoretical
and experimental results on plasmon-related properties and

spectral functions, we verify the low-energy plasmon effects
on the electronic structure of a real system.

The organic conductor (TMTSF)2PF6 is a representative
quasi-one-dimensional material [1,2,10], and basically it
behaves like a good metallic conductor [11,12]. At low
temperature (around 12 K), it undergoes a transition to a
spin-density-wave phase [11]. In the high-temperature metallic
region, photoemission spectroscopy has revealed a small
spectral weight near the Fermi level [13–17]. From this
observation and the quasi-one-dimensional nature, the origin
of the renormalization has been discussed in view of the
Tomonaga-Luttinger liquid [14,17]. On the other hand, this
material exhibits clear low-energy plasma edges around 0.1–1
eV in the reflectance spectra [11,12]. Therefore, this plasmon
excitation would also be a prominent renormalization factor
of the electronic structure.

The transition-metal oxide SrVO3 is another well-known
correlated metal [18,19]. Many high-resolution photoemis-
sion measurements [20], including the bulk-sensitive version
[21,22], were performed. These measurements clarified the
strong renormalization of the low-energy isolated band and
the satellite peak just below this band. The origin has actively
been discussed in terms of local electronic correlation [5–7,23–
33]. On the other hand, reflectance and electron-energy-loss
spectra have clarified low-energy plasmon excitations around
1.4 eV [19]. In density-functional band structure, SrVO3 has
isolated bands of the t2g orbitals around the Fermi level,
whose bandwidth is about 2.7 eV [5–7]. Also, the constrained
random-phase approximation gives an estimate of the local
electronic interaction of ∼2–3 eV [34–38]. Thus, the energy
scale of the experimentally observed plasmon excitation
is comparable to the bandwidth and the local Coulomb
interaction. Hence, the low-energy plasmon fluctuation would
certainly be relevant to the low-energy properties.

To study how plasmon excitation affects electronic struc-
ture, we perform ab initio calculations based on the GW

approximation [8,39–63]. The GW calculation considers the
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self-energy effect due to plasmon fluctuation, and it provides
a proper description of quasiparticle energies in the valence
region. On the other hand, the description for the plasmon
satellite in the spectral function is known to be less accurate
[42]. To overcome this deficiency, ab initio GW plus cumu-
lant (GW + C) calculations have recently been performed
[9,64–72]. The accuracy of the GW + C method has been
verified in bulk silicon [66,67] and simple metals [65], where
the satellite property is improved satisfactorily. In the present
study, we apply the GW + C method to the study of the
above-mentioned isolated-band systems, and we show that
the low-energy plasmon fluctuations modify substantially the
low-energy electronic structure.

The present paper is organized as follows. In Sec. II, we
describe the GW and GW + C methods to calculate dielectric
and spectral properties. Computational details and results for
(TMTSF)2PF6 and SrVO3 are given in Sec. III. We also discuss
the comparison between theory and experiment, focusing on
the renormalization of the electronic structure due to plasmon
excitation. A summary is given in Sec. IV.

II. METHOD

In this section, we describe ab initio GW and GW + C

methods. The latter is a post-GW treatment and uses the self-
energies calculated with the GW approximation. Below, we
first describe the details of the GW calculation.

A. GW approximation

The noninteracting Green’s function is written as

G0(r,r′,ω) =
∑
αk

φαk(r)φ∗
αk(r′)

ω − εαk + iδ sgn(εαk − μ)
, (1)

where k and ω are the wave vector and the frequency,
respectively. φαk(r) and εαk are the Kohn-Sham (KS) wave
function and its energy, respectively, and μ is the Fermi level
of the KS system. The δ parameter is chosen to be a small
positive value to stabilize numerical calculations.

A noninteracting polarization function of a type −iG0G0

is written in matrix form in the plane-wave basis as

χ0
GG′(q,ω) = 2

∑
k

unocc∑
α

occ∑
β

MG
αβ(k + q,k)MG′

αβ(k + q,k)∗

×Xαk+q,βk(ω) (2)

with MG
αβ(k + q,k) = 〈φαk+q|ei(q+G)·r|φβk〉 and

Xαk+q,βk(ω) = 1

ω − εαk+q + εβk + iδ

− 1

ω + εαk+q − εβk − iδ
, (3)

where G is a reciprocal-lattice vector. With this polarization
function, the symmetrized dielectric matrix in reciprocal space
is defined by

εGG′(q,ω) = δGG′ − 4π

V

1

|q + G|χ
0
GG′(q,ω)

1

|q + G′| , (4)

where V is the crystal volume. In the q + G → 0 limit, the
dielectric matrix in Eq. (4) is expressed by [73]

εGG′(0,ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 4π
V

2
∑

k

∑unocc
α

∑occ
β

∣∣ p
μ
αβ (k)

εαk−εβk

∣∣2
Xαk,βk(ω) − (ωpl,μμ)2

ω(ω+iδ) (G = G′ = 0),

− 4π
V

2
∑

k

∑unocc
α

∑occ
β

( p
μ
αβ (k)

εαk−εβk

)MG′
αβ (k,k)∗

|G′| Xαk,βk(ω) (G = 0,G′ �= 0),

− 4π
V

2
∑

k

∑unocc
α

∑occ
β

MG
αβ (k,k)
|G|

( p
μ
αβ (k)

εαk−εβk

)∗
Xαk,βk(ω) (G �= 0,G′ = 0),

δGG′ − 4π
V

1
|G|χ

0
GG′(0,ω) 1

|G′| (otherwise),

(5)

where q approaches zero along the Cartesian μ direction, and
p

μ

αβk is a matrix element of momentum as

p
μ

αβk = −i〈φαk| ∂

∂xμ

+ [VNL,xμ]|φβk〉, (6)

with VNL being the nonlocal part of the pseudopotential. In the
first line of Eq. (5), the last term on the right-hand side is the
Drude term of the intraband transitions around the Fermi level
[60,74,75], where

ωpl,μν =
√

8π

�N

∑
αk

p
μ

ααkp
ν
ααkδ(εαk − μ) (7)

is the bare plasma frequency. The other terms in Eq. (5) result
from interband transitions.

We next describe the calculation of the self-energy. The
operator of the exchange self-energy is defined by

X(r,r′) = i

∫
dω

2π
G0(r,r′,ω)v(r,r′), (8)

where v(r,r′) = 1/|r − r′| is the bare Coulomb interaction. In
practice, we use an attenuation Coulomb interaction ṽ(r,r′) =
�(Rc − |r − r′|)/|r − r′| with a cutoff Rc instead of v to treat
the integrable singularities in the bare Coulomb interaction
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[76]. The matrix element of the exchange self-energy is thus

X
αβk =

∫
dr

∫
dr′φ∗

αk(r)X(r,r′)φβk(r′)

= 
X,body
αβk + 

X,head
αβk , (9)

where X,body and X,head are the “body” and “head” com-
ponents of the exchange self-energy, respectively. The former
body matrix element is expressed as


X,body
αβk = 4π

V

∑
qGn

′MG
αn(k,k − q)MG

βn(k,k − q)∗

×1 − cos(|q + G|Rc)

|q + G|2 θ̃ (μ − εnk−q) (10)

with

θ̃ (μ − ε) = 1

π
arctan

(
μ − ε

δ

)
+ 1

2
. (11)

The prime in the sum of Eq. (10) represents the summation
excluding the contribution of the head term of q + G = 0.
Corresponding to the replacement of v with ṽ, the related
Fourier transform is modified from 1

|q+G| to
√

1−cos(|q+G|Rc)
|q+G| in

Eq. (10). Accordingly, the body matrix element in Eq. (10) is
supplemented by the head component in Eq. (9),


X,head
αβk = 2π

V
R2

c δαβθ (μ − εαk). (12)

The operator of the correlation self-energy is defined by

C(r,r′,ω) = i

∫
dω′

2π
G0(r,r′,ω + ω′)WC(r,r′,ω′), (13)

where WC(ω) = W (ω) − v is the correlation part of the sym-
metrized screened Coulomb interaction W (ω) = v

1
2 ε−1(ω)v

1
2 .

Here, ε−1 is the inverse dielectric function, which is calculated
by inverting the symmetrized dielectric matrix in Eqs. (4)
and (5). For a practical calculation of the matrix element of
C(r,r′,ω) in Eq. (13), we introduce the following model
screened interaction [63]:

W̃C(r,r′,ωi) =
∑

j

bij aj (r,r′) (14)

with

bij = 1

ωi − zj

− 1

ωi + zj

. (15)

In Eq. (14), the real frequency ω is discretized into ωi , and
zj and aj (r,r′) are the pole and amplitude of the model
interactions, respectively. The matrix element bij comprises a
square matrix [see Sec. III(A)]. Since the frequency-dependent
part W̃C is decoupled from the amplitude part, the frequency
integral in iG0W̃C can be analytically performed. The matrix
element of C(ω) consists of the body and head components
as follows:

C
αβk(ω) = 

C,body
αβk (ω) + 

C,head
αβk (ω). (16)

The body matrix element in the above is given by [77]


C,body
αβk (ω)=

∑
jnq

′ 〈φαkφnk−q|aj |φnk−qφβk〉
ω − εnk−q − (zj − iδ)sgn(εnk−q − μ)

,

(17)

where the numerator is given by

〈φαkφnk−q|aj |φnk−qφβk〉 =
∑

i

(b−1)ji

×〈φαkφnk−q|WC(ωi)|φnk−qφβk〉
(18)

with

〈φαkφnk−q|WC(ωi)|φnk−qφβk〉

= 4π

V

∑
GG′

′ M
G
αn(k,k − q)

√
1 − cos(|q + G|Rc)

|q + G|
×[

ε−1
GG′(q,ωi) − δGG′

]
×MG′

βn(k,k − q)∗
√

1 − cos(|q + G′|Rc)

|q + G′| . (19)

Note that, in the practical calculation, the frequency ω for the
self-energy in Eq. (17) is distinguished from the frequency
ωi for the screened interaction in Eq. (14). The body matrix
element 

C,body
αβk (ω) in Eq. (17) is supplemented with the head

component in Eq. (16),


C,head
αβk (ω) = 2πR2

c

V
δαβ

×
∑

j

gj

ω − εαk − (zj − iδ)sgn(εαk − μ)

(20)
with

gj =
∑

i

(b−1)ji

[
ε−1

00 (0,ωi) − 1
]
. (21)

With these ingredients, the spectral function is calculated
via the Wannier-interpolation method (see below). The spectral
function at an arbitrary k is

A(k,ω) = 1

π

∑
α

∣∣∣∣Im 1

ω − [Eαk(ω) + �]

∣∣∣∣, (22)

where Eαk(ω) is obtained by diagonalizing the nonsymmetric
complex matrix in the Wannier basis,

Hij (k,ω) = hij (k) + ij (k,ω), (23)

where hij (k) is the Fourier transform of the KS Hamiltonian
matrix in the Wannier basis as

hij (k) =
∑

R

hijReik·R (24)

with

hijR = 1

N

∑
k′α

〈wi0|φαk′ 〉εαk′ 〈φαk′ |wj0〉eik′ ·R. (25)

Here, k′ is a k point in the regular mesh and N is the total
number of k points in the regular mesh. Also, |wiR〉 is the
ith Wannier orbital at the lattice point R, and the transform
〈φαk′ |wi0〉 is obtained in the Wannier-function-generation
routine. ij (k,ω) in Eq. (23) is the Fourier transform of the
self-energy in the Wannier basis as

ij (k,ω) =
∑

R

ijR(ω)eik·R (26)
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with

ijR(ω) = 1

N

∑
k′αβ

〈wi0|φαk′ 〉αβk′(ω)〈φβk′ |wj0〉eik′ ·R. (27)

The matrix element αβk′(ω) is defined by

αβk′(ω) = 〈φαk′ |X + C(ω) − V xc|φβk′ 〉, (28)

where V xc is the exchange-correlation potential in density-
functional theory.

In Eq. (22), the energy shift � is introduced to correct the
mismatch of the Fermi level between the KS and one-shot GW

systems. This parameter is determined from the equation on
the spectral norm,

2

Nk

∑
k

∫ μ

−∞
A(k,ω)dω = Nelec, (29)

where Nelec is the total number of electrons in the system
and Nk is the total number of sampling k points after the
interpolation. Note that μ is set to the Fermi level for the KS
system.

The flow of the calculation is as follows: We first perform
density-functional calculations to obtain the band structures
and the Wannier functions for bands associated with the self-
energy calculations. We then calculate the self-energies for
the irreducible k points {k̄} in a regular mesh, including band
off-diagonal terms as αβk̄(ω) = X

αβk̄
+ C

αβk̄
(ω) − V xc

αβk̄
in

the selected energy region. The self-energies at a k′ point
symmetrically equivalent to k̄ are the same as αβk̄(ω), but,
in the time-reversal symmetry case, αβk′(ω) is obtained
by αβk′(ω) = βα,−k̄(ω). Then, we transform αβk′(ω) in
Eq. (28) to the Wannier representation ijR(ω) with Eq. (27).
With these data, we evaluate the self-energy at an arbitrary
k via Eq. (26). Note that the calculated spectral function
includes band-off-diagonal effects, which are discussed in
Appendix A. Finally, we calculate the spectral function of
Eq. (22) considering the energy shift � in Eqs. (22) and (29).

B. GW+cumulant expansion method

The GW + C approach is a theory beyond the GW approxi-
mation [42,64,65], which is based on systematic diagrammatic
expansions. This approach is suitable for dealing with long-
range correlations, i.e., various types of plasmon-fluctuation
diagrams not included in the usual GW diagram. In the
initial stage of the study, it was applied to a system of core
electrons interacting with a plasmon field [64]. Currently,
ab initio GW + C calculations have been known to give
a better description for satellites due to plasmon excitation
[9,42,64–72].

The Green’s function with the cumulant expansion is
defined in the time domain by [42]

Gαk(t) = i�(−t)e−iεαkt+Ch
αk(t) − i�(t)e−iεαkt+C

p

αk(t),

(30)

where εαk < μ for the first term on the right-hand side and
εαk > μ for the second term. Ch

αk(t) and C
p

αk(t) are the
cumulants for the hole and particle states, respectively. The

spectral function is calculated by the Fourier transform as

A(k,ω) = 1

π

∑
α

Im
∫ ∞

−∞
dt eiωtGαk(t)

= Ah(k,ω) + Ap(k,ω), (31)

which consists of the hole Ah(k,ω) and particle Ap(k,ω)
contributions.

The spectral function for the hole part is written as

Ah(k,ω) = 1

π

occ∑
α

Imi

∫ 0

−∞
dt eiωt e−iεαkt eCh

αk(t), (32)

where the band sum is taken over the occupied states. To lowest
order in the screened interaction W , the cumulant is obtained
by [42,64,65,78]

Ch
αk(t) = i

∫ ∞

t

dt ′
∫ ∞

t ′
dτ eiεαkταk(τ ), (33)

where  = X + C − V xc.
In the present study, the cumulant is expanded around the

quasiparticle energy Eαk [68], which is a solution of

Eαk = εαk + Reαk(Eαk) + �, (34)

where � is an energy shift to correct a mismatch of the Fermi
level between the KS and one-shot GW + C systems. By
considering the Fourier transform of (τ ) in Eq. (33) and the
spectral representation of (ω), and after some manipulation
[42,64,65], the expression of the cumulant is obtained, which
consists of the quasiparticle and satellite parts as

Ch
αk(Eαk,t) = C

h,qp
αk (Eαk,t) + C

h,s
αk (Eαk,t) (35)

with

C
h,qp
αk (Eαk,t) = −i[αk(Eαk) + �]t + ∂h

αk(Eαk)

∂ω
(36)

and

C
h,s
αk (Eαk,t) = 1

π

∫ μ

−∞
dω′ ei(Eαk−ω′−iδ)t

(Eαk − ω′ − iδ)2
Imαk(ω′). (37)

Note that t is negative for the hole part. To show the expansion
point explicitly, we add Eαk as an index in the cumulant
Eqs. (35)–(37). Within the one-shot calculation, the position
of the cumulant expansion may be taken at the noninteracting
energy εαk [42,64,65]. By taking the expansion point at Eαk,
the results may include some sort of self-consistency effect.

The hole self-energy in Eq. (36) is defined by

h
αk(ω) = 1

π

∫ μ

∞
dω′ Imαk(ω′)

ω − ω′ − iδ
. (38)

It should be noted that the derivative ∂h
αk(Eαk)
∂ω

in Eq. (36) is
related to the t = 0 component of the satellite cumulant in
Eq. (37) as [42]

∂h
αk(Eαk)

∂ω
= −C

h,s
αk (Eαk,0)

= − 1

π

∫ μ

−∞
dω′ Imαk(ω′)

(Eαk − ω′ − iδ)2
. (39)
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This expression is used practically to evaluate the derivative;
we avoid the numerical calculation of the derivative by a finite
difference and use the integral expression on the right-hand
side of Eq. (39) for the derivative, since we find that the latter
treatment is numerically more stable. The stable calculation
of the derivative is important in keeping the sum rule on the
GW + C spectrum.

In the practical calculation, we divide Ah(k,ω) in Eq. (32)
into two parts for stable calculations as [42]

Ah(k,ω) = Ah,qp(k,ω) + Ah,qp(k,ω) ∗ Ah,s(k,ω). (40)

The first quasiparticle term on the right-hand side can be
calculated analytically as

Ah,qp(k,ω) = 1

π

occ∑
α

e−γαk
ηαk cos βαk − (ω − Eαk) sin βαk

(ω − Eαk)2 + η2
αk

,

(41)

where

ηαk = Imαk(Eαk) + δ, (42)

γαk = −Re
∂h

αk(Eαk)

∂ω
, (43)

βαk = −Im
∂h

αk(Eαk)

∂ω
. (44)

The latter convolution term in Eq. (40) is calculated via
numerical integration as

Ah,qp(k,ω) ∗ Ah,s(k,ω) = 1

π

occ∑
α

Imi

∫ 0

−∞
dt eiωt e−iεαkt

×eC
h,qp
αk (Eαk,t)

(
eC

h,s
αk (Eαk,t) − 1

)
,

(45)

where the integrand on the right-hand side decays to zero
rapidly.

The particle part of the spectral function in Eq. (31) is given
by

Ap(k,ω) = 1

π

unocc∑
α

Imi

∫ ∞

0
dt eiωt e−iεαkt eC

p

αk(Eαk,t) (46)

with

C
p

αk(Eαk,t) = C
p,qp
αk (Eαk,t) + C

p,s

αk (Eαk,t). (47)

In this case, t is positive. The band sum in Eq. (46) runs over
the unoccupied states. Cp,qp

αk (Eαk,t) and C
p,s

αk (Eαk,t) are given
by

C
p,qp
αk (Eαk,t) = −i[αk(Eαk) + �]t + ∂

p

αk(Eαk)

∂ω
(48)

and

C
p,s

αk (Eαk,t) = −1

π

∫ ∞

μ

dω′ ei(Eαk−ω′+iδ)t

(Eαk − ω′ + iδ)2
Imαk(ω′),

(49)

respectively. The p in Eq. (48) is the particle self-energy as


p

αk(ω) = −1

π

∫ ∞

μ

dω′ Imαk(ω′)
ω − ω′ + iδ

. (50)

Note that the self-energies in the above equations are defined
as the causal one, so that the imaginary part of the self-energy
is positive for ω < μ and negative for ω > μ. In the particle

part, ∂
p

αk(Eαk)
∂ω

= −C
p,s

αk (Eαk,0) holds similarly to Eq. (39).
The contribution from the quasiparticle part to Ap(k,ω) is

Ap,qp(k,ω)= −1

π

unocc∑
α

e−γαk
ηαk cos βαk − (ω − Eαk) sin βαk

(ω − Eαk)2 + η2
αk

(51)

with

ηαk = Imαk(Eαk) − δ, (52)

γαk = −Re
∂

p

αk(Eαk)

∂ω
, (53)

βαk = −Im
∂

p

αk(Eαk)

∂ω
, (54)

and the convolution-part contribution is

Ap,qp(k,ω) ∗ Ap,s(k,ω) = 1

π

unocc∑
α

Imi

∫ ∞

0
dt eiωt e−iεαkt

×eC
p,qp
αk (Eαk,t)(eC

p,s

αk (Eαk,t) − 1).

(55)

III. RESULTS AND DISCUSSIONS

A. Calculation condition

Density-functional calculations were performed with the
Tokyo Ab-initio Program Package [79] with plane-wave basis
sets, where we employed norm-conserving pseudopotentials
[80,81] and the generalized gradient approximation (GGA) for
the exchange-correlation potential [82]. Maximally localized
Wannier functions [83,84] were used for the interpolation of
the self-energy.

For the atomic coordinates of (TMTSF)2PF6, the experi-
mental structure obtained by a neutron measurement [10] at
20 K was adopted. The cutoff energies in the wave function
and the charge densities are 36 and 144 Ry, respectively, and
a 15 × 15 × 3 k-point sampling was employed. The cutoff for
the polarization function in Eq. (2) was set to 3 Ry, and 200
bands were considered, which covers an energy range from
the bottom of the occupied states near −30 eV to the top of
the unoccupied states near 15 eV, where 0 eV is the Fermi
level. The frequency grid of the polarization was taken up to
ωmax = 86 eV in a double-logarithmic form, for which we
sampled 99 energy points for [0.1 eV: 43 eV] and 10 points
for [43 eV: 86 eV] with an initial grid set to be 0.0 eV. The
k sum over the BZ in Eqs. (2), (5), and (7) was evaluated
by the generalized tetrahedron method [63,85]. The Drude
term of ω = 0 is evaluated at the slightly shifted frequency
ω = 10−10 (a.u.). The self-energy in Eq. (17) was calculated
for the frequency range [−�max eV: �max eV], where �max
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was set to be 100 eV. In the practical calculation, we sampled
450 points for [−100 eV: −10 eV] with the interval of 0.2 eV,
1000 points for [−10 eV: 10 eV] with the 0.02 eV interval, and
450 points for [10 eV: 100 eV] with the 0.2 eV interval. With
this energy range, the high-frequency tail of the self-energy is
sufficiently small. This convergence is important to preserve
the norm of the spectral function.

For SrVO3, band calculations were performed for the
idealized simple cubic structure, where the lattice parameter
was set to a = 3.84 Å. The cutoff energies for the wave
function and charge densities are 49 and 196 Ry, respectively,
and an 11 × 11 × 11 k-point sampling was employed. The
cutoff energy for the polarization function was set to 10 Ry,
and 130 bands were considered, which covers from the
bottom of the occupied states near −20 eV to the top
of the unoccupied states near 90 eV. The frequency range of the
polarization function was taken to be ωmax = 220 eV, where
finer logarithmic sampling was applied to [0.1 eV: 110 eV]
with 189 points, and coarser sampling was done for [110 eV:
220 eV] with 10 points, with the initial grid set to 0.0 eV.
In the self-energy calculation, �max was set to 200 eV, thus
the frequency dependence of the self-energy was calculated
for [−200 eV: 200 eV], where we sampled 200 points for
[−200 eV: −40 eV] with the 0.8 eV interval, 1600 points for
[−40 eV: 40 eV] with the 0.05 eV interval, and 200 points
for [40 eV: 200 eV] with the 0.8 eV interval.

In the fitting of the model screened interaction [Eqs. (14)
and (15)], the positions of the poles in the model interaction
are set as follows [63]:

zi = ωi+1 + ωi

2
+ i

(
3

2
�i

)
, (56)

with �i = ωi+1 − ωi . The total number of {zi} is the same as
that of the frequency grid {ωi} for the polarization function.
We checked that the ab initio screened interaction WC(ω)
is satisfactorily reproduced by this model function W̃C(ω).
The broadening δ in Eqs. (2), (11), (17), (37), (42), (49),
and (52) was set to 0.02 eV for (TMTSF)2PF6 and 0.05 eV
for SrVO3. The value of δ should be small enough, but the
lower bound in the practical calculation is determined by
the resolution of the band dispersion, depending primarily
on the k-mesh density. Also, the cutoff Rc in the attenuation
potential [Eqs. (10) and (19)] is 28.27 Å for (TMTSF)2PF6 and
11.53 Å for SrVO3, respectively. For (TMTSF)2PF6, the shift
� in the spectral function A(k,ω) in Eq. (22) was found to be
1.06 eV for the GW calculation and 0.90 eV for the GW + C

one, respectively. For SrVO3, � = 2.1 eV for the GW

calculation and 2.35 eV for the GW + C calculation.
In GW + C, two numerical integrals on time and frequency

appear [Eqs. (45) and (55) for the time integral and Eqs. (37)
and (49) for frequency integral], and they must be treated
carefully. We performed time integrals in Eq. (45) numerically
for the range [−tmax a.u.: 0 a.u.] and those in Eq. (55) for
[0 a.u.: tmax a.u.], where tmax is 50 (a.u.). The total number of
the time grid Nt is 50 000, with the interval �t = tmax/Nt =
0.001 a.u. Note that �max�t � 1 is necessary to reproduce the
norm of the spectral weight correctly. The frequency integral in
Eqs. (37) and (49) was numerically evaluated using Simpson’s
formula for the interval �ω divided into 21 subintervals, which
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FIG. 1. Density-functional GGA band structures (solid red
curves) of (a) (TMTSF)2PF6 and (b) SrVO3. The Fermi level is
at zero energy. In panel (a), the green-dotted, blue-dotted, and
black-dotted curves denote the HOMO, HOMO − 1, and HOMO − 2
bands, respectively. In (b), the green-dotted and blue-dotted curves
correspond to the t2g and Op bands, respectively.

is also important in obtaining the correct time dependence of
the satellite cumulant. Also, in the k integration to obtain the
GW + C density of states A(ω), random k-point sampling
was performed to improve the statistical average, where the
Wannier interpolation technique was applied efficiently. With
this condition, we obtained well-converged spectra.

B. Density-functional band structure

Figure 1 shows calculated GGA band structures of
(TMTSF)2PF6 [panel(a)] and SrVO3 [(b)]. In both sys-
tems, isolated bands are found around the Fermi level. In
(TMTSF)2PF6, the isolated bands consist of the highest-
occupied molecular orbital (HOMO) of two molecules in the
unit cell. [For detailed atomic geometry of (TMTSF)2PF6, refer
to Refs. [3,8].] We call them the “HOMO” bands, which are
shown with the green-dotted curves. In addition, in this figure,
“HOMO−1” and “HOMO−2” bands are shown by blue- and
black-dotted curves, respectively [86]. In SrVO3, the isolated
bands (green-dotted curves) around the Fermi level are formed
by the t2g orbitals of the vanadium atom, and bands around
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FIG. 2. Ab initio reflectivity R(ω) (solid curve) based on the
random-phase approximation and the experimental R(ω) (open
circles) of (a) (TMTSF)2PF6 measured at 25 K and (b) SrVO3

measured at room temperature. The experimental data are taken
from Ref. [11] for (TMTSF)2PF6 and Ref. [19] for SrVO3. In
(TMTSF)2PF6, the results for E‖a and E‖b′ are displayed by dark
red and light green, respectively.

[−7 eV: −2 eV] come from the oxygen-p orbitals (blue-dotted
curves) [87].

C. Low-energy plasmon excitation

To confirm the low-energy plasmon excitation in the above
isolated-band systems, we calculated the reflectance spectra
with the random-phase approximation,

Rμμ(ω) =
∣∣∣∣1 −

√
ε−1
μμ(ω)

1 +
√

ε−1
μμ(ω)

∣∣∣∣, (57)

where ε−1
μμ(ω) is obtained by an inverse of the dielectric matrix

in Eq. (5). Figure 2(a) is the result for (TMTSF)2PF6, where
dark red and light green represent the results in the light
polarization of E‖a and E‖b′, respectively, and the a axis (a ⊥
b′) is the one-dimensional conducting axis. The calculated
results (solid curves) are compared with experimental results
(circles). We see that the theoretical plasma edges satisfactorily
reproduce the experimental ones around 0.8 eV for E‖a and
0.1–0.2 eV for E‖b′, which indicates that the present scheme
correctly captures the low-energy plasmon excitation. Panel
(b) shows the result for SrVO3. We again see a reasonable

TABLE I. List of parameters for bare plasma frequency ωpl,
bandwidth W , onsite interaction U , nearest-neighbor interaction V ,
and U − V for (TMTSF)2PF6 and SrVO3. The interaction parameters
are calculated with the constrained random-phase approximation
[88–90]. The parameters of (TMTSF)2PF6 are calculated for the
HOMO bands, and those of SrVO3 are evaluated for the t2g bands.
The unit is eV.

ωpl W U V U − V

(TMTSF)2PF6 1.25 (E‖a) 1.26 2.02 0.94 1.08
0.20 (E‖b′)

SrVO3 3.54 2.55 3.48 0.79 2.69

agreement between theory and experiment for the plasma edge
(1.8 eV for theory and 1.4 eV for experiment).

Table I summarizes parameters characterizing the low-
energy electronic structures of the two isolated-band systems,
i.e., the HOMO bands of (TMTSF)2PF6 and the t2g bands
of SrVO3. The table includes the calculated bare plasma
frequency ωpl in Eq. (7), bandwidth W , and effective local-
interaction parameter U − V , with U and V being onsite and
nearest-neighbor interactions, respectively, calculated with the
constrained random-phase approximation [88–90]. We note
that ωpl is by definition different from the plasma edge in the
reflectance spectra in Fig. 2; the latter energies are lowered
from the bare ωpl by the presence of individual electronic
excitations. We see that ωpl has the same size as W and U − V ,
indicating that the energy scale of the plasmon excitation
would compete with those of kinetic and local electronic-
interaction energies of electrons in the isolated band. The
long-range interaction and related plasmon fluctuations would
clearly be important for electronic structure.

D. Spectral function of (TMTSF)2PF6

To study the effects of low-energy plasmon excitation in
isolated bands on electronic structure, we calculated a spectral
function A(k,ω) for the HOMO bands of (TMTSF)2PF6.
Figure 3 displays the calculated spectra, where panels (a) and
(b) are the GW result via Eq. (22) and the GW + C one
via Eq. (31), respectively. For comparison, the GGA band
structure is superposed with blue-solid curves. In the GW

spectrum, clear incoherent peaks appear; along the Y -� line,
the spectral intensities of plasmaron states [91,92] emerge
about 1 eV above (below) the unoccupied (occupied) part of
the HOMO bands [8]. Also, along the X-M line, the spectra
are more broadened and spread in the range from −1.5 to
0 eV. Interestingly, these sharp plasmaron peaks do not appear
in the GW + C spectrum. Instead, the GW + C spectrum
exhibits a broad incoherent structure throughout the BZ. This
is because the GW + C treatment takes further into account
the long-range correlation effect [42,67] or various types of
the self-energy diagram involving plasmon fluctuation, which
is not included in standard GW calculations.

In panel (c), the density of states

A(ω) =
∫

BZ
A(k,ω)dk (58)
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FIG. 3. Spectral function for the HOMO bands of (TMTSF)2PF6

calculated with (a) the GW approximation and (b) the GW + C

method. Blue-solid curves are the GGA results. The Fermi level is
at zero energy. The color bar is in a linear scale. (c) Comparison
of the density of states among the GW + C (red-solid curve), GW

(blue-dashed curve), and GGA (black-thin curve) results.

is shown, where the GW + C, GW , and GGA results are
plotted by red-solid, blue-dashed, and thin-black-solid curves,
respectively. Compared to the GGA spectrum, the GW and
GW + C spectra show an appreciable band renormalization
around the Fermi level by plasmon excitation. We again
confirm that the distinct plasmon satellite (plasmaron) around
−2 and +1 eV in the GW spectrum disappears in the GW + C

spectrum.
Figure 4 contains a comparison between theoretical pho-

toemission spectra

A(ω < μ) =
∫

BZ
A(k,ω < μ)dk (59)

and experimental spectra (green open circles) obtained with
He II radiation (hν = 40.8 eV) at 50 K (Ref. [13]). Thick-
red-solid, blue-dashed, and thin-black-solid curves are the
GW + C, GW , and GGA results, respectively. The spectra
were calculated for the HOMO, HOMO − 1, and HOMO − 2
bands to cover the energy range measured in the experiment.
We see that the GGA spectrum around the Fermi level is
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FIG. 4. (a) Ab initio and experimental photoemission spectra for
(TMTSF)2PF6. The experiment is done using the He II radiation at
50 K (green open circles) (Ref. [13]). The spectra are calculated for
the HOMO, HOMO − 1, and HOMO − 2 bands. Red-thick-solid,
blue-dashed, and black-thin-solid curves denote the GW + C, GW ,
and GGA results, respectively. A Lorentzian broadening of 0.02 eV
is applied to the calculated spectra.

largely reduced in the GW and GW + C spectra by the
self-energy effect due to plasmon excitation. The GW + C

spectrum agrees with the overall profile of the experimental
spectrum better than the GW result; the broader spectrum is
obtained in the GW + C result around −2 ∼ −3 eV than in
the GW one. The discrepancy in the level position in this
region between theory and experiment likely arises from the
level underestimation of the flat GGA HOMO−1 band [see
Fig. 1(a)].

E. Spectral function of SrVO3

Next, we consider the low-energy plasmon-fluctuation
effect on the electronic structure of the transition-metal oxide
SrVO3. Figure 5 shows the spectral function calculated for
the t2g and Op bands, where panels (a) and (b) show the
GW and GW + C results, respectively. The GGA bands
are depicted with blue-solid curves. The low-energy plasmon
satellite emerges around 1 eV above (below) the unoccupied
(occupied) part of the t2g bands, but the intensity is weaker
than that of (TMTSF)2PF6. Similarly to the TMTSF case,
the GW + C for SrVO3 makes the plasmon satellite broader
than the GW result. On the Op bands, the self-energy effect
is appreciable; the imaginary part of the self-energy, which is
related to the lifetime of the quasiparticle states, becomes large
as the binding energy is apart from the Fermi level. Thus, the
spectrum of the Op band becomes rather broad.

Panel (c) shows a comparison of calculated densities of
states. We see that the GGA spectrum in the t2g and Op bands
is largely renormalized in the GW and GW + C spectra. The
shape of the GW spectrum resembles the GW + C one, though
the latter is somewhat more broadened.

Figure 6 compares theoretical photoemission spectra with
experimental ones taken from Refs. [20,21]. Light-green
circles and black dots are the experimental photoemission
spectra with photon energies hν ∼ 60 eV (Ref. [20]) and
hν ∼ 900 eV (Ref. [21]), respectively. On the overall profile,
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FIG. 5. Spectral function for the t2g and Op bands of SrVO3

calculated with (a) the GW approximation and (b) the GW + C

method. Blue-solid curves are the GGA results. The Fermi level is at
zero energy. The color bar is in a linear scale. (c) Comparison of the
density of states among GW + C (red-solid curve), GW (blue-dashed
curve), and GGA (black-thin curve) results.

the ab initio GW + C spectrum reasonably reproduces the
experimental results such as the relative intensity between
the t2g and Op bands [9]. On the other hand, we see that
the theoretical incoherent intensity around −1 ∼ −2 eV is
weaker than the experimental incoherent intensity. In the
LDA+DMFT calculations focusing on the local-interaction
effect [5–7,23–33], this satellite is interpreted as a trace of
the lower Hubbard band. On the other hand, as emphasized
in the reflectance data [Fig. 2(b)], this material includes the
appreciable low-energy plasmon fluctuation. The competition
between plasmon fluctuation and short-ranged quantum fluc-
tuation would make this material a very fascinating one.

In Fig. 7, we compare the theoretical spectra of an
unoccupied region in the t2g bands,

A(ω > μ) =
∫

BZ
A(k,ω > μ)dk, (60)
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FIG. 6. (a) Ab initio and experimental photoemission spectra for
SrVO3. Red-thick-solid, blue-dashed, and black-thin-solid curves are
the GW + C, GW , and GGA results, respectively. In the experiment,
light-green circles and black dots denote the photoemission spectra
with the photon energies hν ∼ 60 eV (Ref. [20]) and hν ∼ 900 eV
(Ref. [21]), respectively. A Lorentzian broadening of 0.05 eV is
applied to the calculated spectra.

with experimental spectra taken from the soft-x-ray absorption
spectrum (green circles) (Ref. [93]). The effect of low-energy
plasmon excitation on electronic structure appears to be
stronger in the unoccupied region than in the occupied one [9].
The ab initio GW + C spectrum resembles the experimental
spectrum more closely than the GW result; the cumulant
expansion reduces the quasiparticle intensity and shifts the
plasmon satellite to a lower energy. We note that the theoretical
spectra do not include the contribution from the eg states. Also,
in SrVO3, since the local-interaction effect competes with
the plasmon excitation, a view of the competition of several
factors would be important for a quantitative understanding;
this remains to be explored.

IV. CONCLUSION

We have performed ab initio GW plus cumulant-expansion
calculations for an organic conductor (TMTSF)2PF6 and
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FIG. 7. Comparison between ab initio and experimental spectra
(green open circles) for the unoccupied region of the t2g bands. The
experimental data are taken from the soft-x-ray absorption spectrum
(Ref. [93]). Red-thick-solid, blue-dashed, and black-thin-solid curves
are the GW + C, GW , and GGA results, respectively. A Lorentzian
broadening of 0.05 eV is applied to the calculated spectra.

085124-9



NAKAMURA, NOHARA, YOSIMOTO, AND NOMURA PHYSICAL REVIEW B 93, 085124 (2016)

a transition-metal oxide SrVO3 to study the low-energy
plasmon-fluctuation effect on electronic structure. The bands
around the Fermi level of these materials are isolated from the
other bands, and the low-energy plasmon excitations derived
from these isolated bands exist. Our calculated reflectance
spectra identify well the experimental low-energy plasmon
peaks. By calculating the cumulant-expanded Green’s function
based on the GW approximation to the self-energy, we
simulated spectral functions and compared them with photoe-
mission data. We found agreement between them, indicating
that low-energy plasmon excitation certainly affects low-
energy electronic structure; it reduces the quasiparticle spectral
weight around the Fermi level and leads to weight transfer to
the satellite parts. This effect was found to be more or less
appreciable in (TMTSF)2PF6 than in SrVO3. In particular,
in (TMTSF)2PF6, the spectrum at the standard GW level
exhibits a clear plasmaron state, but considering the plasmon-
fluctuation effects not treated in the standard GW calculation
leads to the disappearance of the state in the GW + C. Since
the low-energy isolated-band structure is commonly found
in various materials, the low-energy plasmon effect pursued
in the present work can provide a basis for understanding
the electronic structure of real systems. Recent progress
in the photoemission experiment for correlated materials
(Refs. [15,94–102]) required concomitant progress on the the-
oretical side, and the present ab initio many-body calculations
would provide a firm basis for further theoretical development.

In the present study, we have focused on long-range corre-
lation and treated it effectively with the cumulant-expansion
method, while short-ranged correlation, which is appropriately
described in the T -matrix framework, is neglected. This is a
future challenge that remains to be explored.

In addition, recent photoemission spectroscopy revealed
appreciable differences in the electronic structure between
bulk and thin-film systems [103]. The electronic structure of
the surface is very sensitive to the atomic configurations at the
surface [104], therefore careful analyses of the atomic structure
and its effect on electronic structure are required. The ab initio
calculations for the surface effect are clearly important for a
deep understanding of the spectroscopy of real materials. This
is also a future challenge.
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APPENDIX: THE OFF-DIAGONAL EFFECT ON THE
SPECTRAL FUNCTION

We briefly describe the effects of band-off-diagonal terms
of the self-energy on spectral functions. With neglecting the

band-off-diagonal terms, the spectral function is calculated as

A(k,ω) = 1

π

∑
α

∣∣∣∣Im 1

ω − [εαk + αk(ω) + �]

∣∣∣∣, (A1)

where the matrix element of the self-energy with respect to the
KS state |φαk〉,

αk(ω) = 〈φαk|X + C(ω) − V xc|φαk〉, (A2)

is the diagonal term of Eq. (28). The � in Eq. (A1) is the energy
shift to correct the mismatch of the Fermi level between the
initial and final states [see Eq. (29)].

Figure 8 displays the GW spectral function of SrVO3 (a)
without and (b) with band off-diagonal terms of self-energy.
Also, panel (c) shows the comparison between the calculated
density of states. We do not see a discernible difference
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FIG. 8. Spectral functions for t2g and Op bands of SrVO3 (a)
without and (b) with the band off-diagonal matrix elements of the
self-energy. Blue solid curves are the GGA result. The Fermi level is
at zero energy. The color bar is in a linear scale. (c) Comparison of the
density of states without (dark-red solid curve) and with (light-green
solid curve) the off-diagonal terms.
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between the two; the band off-diagonal terms of the self-energy
are negligible. This is because, in SrVO3, the d orbitals of the
V atom are well localized, and the hybridization with the Op

orbital is small. Similarly to SrVO3, the band-off-diagonal
effect on the spectral function is found to be very small in
(TMTSF)2PF6.
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and D. Jérôme, Europhys. Lett. 24, 687 (1993).
[15] F. Zwick, S. Brown, G. Margaritondo, C. Merlic, M. Onellion,

J. Voit, and M. Grioni, Phys. Rev. Lett. 79, 3982 (1997).
[16] F. Zwick, M. Grionia, G. Margaritondoa, V. Vescolib, L.

Degiorgib, B. Alavic, and G. Grünerc, Solid State Commun.
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