68 research outputs found

    Neuropeptide signaling through neurokinin-1 and neurokinin-2 receptors augments antigen presentation by human dendritic cells

    Get PDF
    Background: Neurotransmitters, including substance P (SP) and neurokinin A (NKA), are widely distributed in both the central and peripheral nervous system and their receptors, neurokinin-1 receptor (NK1R) and neurokinin-2 receptor (NK2R), are expressed on immune cells. However, the role of the NKA-NK2R axis in immune responses relative to the SP-NK1R signaling cascade has not been elucidated. Objective: We sought to examine the effect of neuropeptide signaling through NK1Rand NK2R on antigen presentation by dendritic cells (DCs) and the subsequent activation of effector Th cells. Methods: Expression levels of NK1R, NK2R, HLA-class II and costimulatory molecules of human MoDCs and cytokine production by birch pollen antigen-specific CD4+ T cells cocultured with MoDCs in the presence of NK1R and NK2R antagonists were evaluated by quantitative RT-PCR, flow cytometry or ELISA. NK1R and NK2R expression in the lung of patients with asthma and hypersensitivity pneumonitis was evaluated by immunohistochemistry. Results: Human MoDCs significantly upregulated NK2R and NK1R expression in response to poly I:C stimulation in a STAT1-dependent manner. Both NK2R and NK1R were expressed on alveolar macrophages and lung DCs from patients with asthma and pneumonitis hypersensitivity. Surface expression levels of HLA-class II and costimulatory molecules on DCs were modulated by NK1R or NK2R antagonists. Activation of birch pollen-derived antigen-specific CD4+ T cells and their production of cytokines including IL-4 and IFN-γ as well as IL-12 production by MoDCs, were suppressed by blocking NK1R or NK2R after in vitro antigen stimulation. Conclusions: NK1R- and NK2R-mediated neuropeptide signaling promotes both innate and acquired immune responses through activation of human DCs

    Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro

    Get PDF
    In the present study, to investigate the mechanisms regulating carotenoid accumulation in citrus, a culture system was set up in vitro with juice sacs of three citrus varieties, Satsuma mandarin (Citrus unshiu Marc.), Valencia orange (Citrus sinensis Osbeck), and Lisbon lemon (Citrus limon Burm.f.). The juice sacs of all the three varieties enlarged gradually with carotenoid accumulation. The changing patterns of carotenoid content and the expression of carotenoid metabolic genes in juice sacs in vitro were similar to those ripening on trees in the three varieties. Using this system, the changes in the carotenoid content and the expression of carotenoid metabolic genes in response to environmental stimuli were investigated. The results showed that carotenoid accumulation was induced by blue light treatment, but was not affected by red light treatment in the three varieties. Different regulation of CitPSY expression, which was up-regulated by blue light while unaffected by red light, led to different changes in carotenoid content in response to these two treatments in Satsuma mandarin and Valencia orange. In all three varieties, increases in carotenoid content were observed with sucrose and mannitol treatments. However, the accumulation of carotenoid in the two treatments was regulated by distinct mechanisms at the transcriptional level. With abscisic acid (ABA) treatment, the expression of the genes investigated in this study was up-regulated in Satsuma mandarin and Lisbon lemon, indicating that ABA induced its own biosynthesis at the transcriptional level. This feedback regulation of ABA led to decreases in carotenoid content. With gibberellin (GA) treatment, carotenoid content was significantly decreased in the three varieties. Changes in the expression of genes related to carotenoid metabolism varied among the three varieties in response to GA treatment. These results provided insights into improving carotenoid content and composition in citrus during fruit maturation

    Pneumonia Caused by Severe Acute Respiratory Syndrome Coronavirus 2 and Influenza Virus: A Multicenter Comparative Study

    Get PDF
    Background: Detailed differences in clinical information between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia (CP), which is the main phenotype of SARS-CoV-2 disease, and influenza pneumonia (IP) are still unclear. Methods: A prospective, multicenter cohort study was conducted by including patients with CP who were hospitalized between January and June 2020 and a retrospective cohort of patients with IP hospitalized from 2009 to 2020. We compared the clinical presentations and studied the prognostic factors of CP and IP. Results: Compared with the IP group (n = 66), in the multivariate analysis, the CP group (n = 362) had a lower percentage of patients with underlying asthma or chronic obstructive pulmonary disease (P < .01), lower neutrophil-to-lymphocyte ratio (P < .01), lower systolic blood pressure (P < .01), higher diastolic blood pressure (P < .01), lower aspartate aminotransferase level (P < .05), higher serum sodium level (P < .05), and more frequent multilobar infiltrates (P < .05). The diagnostic scoring system based on these findings showed excellent differentiation between CP and IP (area under the receiver operating characteristic curve, 0.889). Moreover, the prognostic predictors were different between CP and IP. Conclusions: Comprehensive differences between CP and IP were revealed, highlighting the need for early differentiation between these 2 pneumonias in clinical settings

    Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals

    Get PDF
    Gout is a common arthritis caused by elevated serum uric acid (SUA) levels. Here we investigated loci influencing SUA in a genome-wide meta-analysis with 121,745 Japanese subjects. We identified 8948 variants at 36 genomic loci (P<5 × 10–8) including eight novel loci. Of these, missense variants of SESN2 and PNPLA3 were predicted to be damaging to the function of these proteins; another five loci—TMEM18, TM4SF4, MXD3-LMAN2, PSORS1C1-PSORS1C2, and HNF4A—are related to cell metabolism, proliferation, or oxidative stress; and the remaining locus, LINC01578, is unknown. We also identified 132 correlated genes whose expression levels are associated with SUA-increasing alleles. These genes are enriched for the UniProt transport term, suggesting the importance of transport-related genes in SUA regulation. Furthermore, trans-ethnic meta-analysis across our own meta-analysis and the Global Urate Genetics Consortium has revealed 15 more novel loci associated with SUA. Our findings provide insight into the pathogenesis, treatment, and prevention of hyperuricemia/gout

    Methamphetamine induces endoplasmic reticulum stress related gene CHOP/Gadd153/ddit3 in dopaminergic cells

    Get PDF
    We examined the toxicity of methamphetamine and dopamine in CATH.a cells, which were derived from mouse dopamine-producing neural cells in the central nervous system. Use of the quantitative real-time polymerase chain reaction revealed that transcripts of the endoplasmic reticulum stress related gene (CHOP/Gadd153/ddit3) were considerably induced at 24–48 h after methamphetamine administration (but only under apoptotic conditions), whereas dopamine slightly induced CHOP/Gadd153/ddit3 transcripts at an early stage. We also found that dopamine and methamphetamine weakly induced transcripts for the glucose-regulated protein 78 gene (Grp78/Bip) at the early stage. Analysis by immunofluorescence microscopy demonstrated an increase of CHOP/Gadd153/ddit3 and Grp78/Bip proteins at 24 h after methamphetamine administration. Treatment of CATH.a cells with methamphetamine caused a re-distribution of dopamine inside the cells, which mimicked the presynaptic activity of neurons with cell bodies located in the ventral tegmental area or the substantia nigra. Thus, we have demonstrated the existence of endoplasmic reticulum stress in a model of presynaptic dopaminergic neurons for the first time. Together with the recent evidence suggesting the importance of presynaptic toxicity, our findings provide new insights into the mechanisms of dopamine toxicity, which might represent one of the most important mechanisms of methamphetamine toxicity and addiction

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore