60 research outputs found

    Imagism reconsidered, with special reference to the early poetry of H. D.

    Get PDF
    The main aim of this thesis is to examine how H. D. developed her poetics during the Imagist movement by looking especially at her work in the Imagist anthologies (1915-1917). In order to identify the distinctive qualities of H. D.'s poetry, I shall compare it with that of other Imagists, notably Richard Aldington, John Gould Fletcher, F. S. Flint and Amy Lowell. Previous discussions of H. D.'s early poetics have been held within the context of Ezra Pound's aesthetics, and the characteristics of her poems which are inconsistent with Pound’s criteria have been ignored. Hence, one of the most useful strategies to reinterpret H. D.'s poetry is, first and foremost to reconsider Pound's Imagist theory from a different viewpoint. Because of this, in the first half of this thesis, I will consider Imagism in respect of Japanese poetics; for as regards the relationship between Pound’s theory and the haiku and the Chinese ideograph, there are some important issues which have been hardly discussed. So, these issues provide room for reconsidering the formation of Imagism. Since H. D. left behind hardly any literary criticism, her poems are the most useful source from which to draw clarification of her poetic criteria. Moreover, her correspondence with Amy Lowell provides significant evidence for an examination of H. D.'s poetic practice at this time. In the second half of the thesis, by quoting her own words in letters to Lowell, I identify the characteristics of H.D.'s Imagism which obviously differ from Pound's theory, and trace her development within the Imagist period. By raising a number of critical issues, I intend to illuminate the diversity of Imagism

    Stimulation of ultraviolet-induced apoptosis of human fibroblast UVr-1 cells by tyrosine kinase inhibitors

    Get PDF
    AbstractDamnacanthal is an anthraquinone compound isolated from the root of Morinda citrifolia and was reported to have a potent inhibitory activity towards tyrosine kinases such as Lck, Src, Lyn and EGF receptor. In the present study, we have examined the effects of damnacanthal on ultraviolet ray-induced apoptosis in ultraviolet-resistant human UVr-1 cells. When the cells were treated with damnacanthal prior to ultraviolet irradiation, DNA fragmentation was more pronounced as compared to the case of ultraviolet irradiation alone. The other tyrosine kinase inhibitors, herbimycin A and genistein, also caused similar effects on ultraviolet-induced apoptosis but to a lesser extent. Serine/threonine kinase inhibitors, K252a, staurosporine and GF109203X, rather suppressed the ultraviolet-induced DNA cleavage. Immunoblot analysis showed that pretreatment with damnacanthal followed by ultraviolet irradiation increased the levels of phosphorylated extracellular signal-regulated kinases and stress-activated protein kinases. However, the other tyrosine kinase inhibitors did not increase the phosphorylation of extracellular signal-regulated kinases but stimulated phosphorylation of stress-activated protein kinases. Consequently, the ultraviolet-induced concurrent increase in both phosphorylated extracellular signal-regulated kinases and stress-activated protein kinases after pretreatment with damnacanthal might be characteristically related to the stimulatory effect of damnacanthal on ultraviolet-induced apoptosis

    Live Cell Monitoring of hiPSC Generation and Differentiation Using Differential Expression of Endogenous microRNAs

    Get PDF
    Human induced pluripotent stem cells (hiPSCs) provide new possibilities for regenerative therapies. In order for this potential to be achieved, it is critical to efficiently monitor the differentiation of these hiPSCs into specific lineages. Here, we describe a lentiviral reporter vector sensitive to specific microRNAs (miRNA) to show that a single vector bearing multiple miRNA target sequences conjugated to different reporters can be used to monitor hiPSC formation and subsequent differentiation from human fetal fibroblasts (HFFs). The reporter vector encodes EGFP conjugated to the targets of human embryonic stem cell (hESC) specific miRNAs (miR-302a and miR-302d) and mCherry conjugated to the targets of differentiated cells specific miRNAs (miR-142-3p, miR-155, and miR-223). The vector was used to track reprogramming of HFF to iPSC. HFFs co-transduced with this reporter vector and vectors encoding 4 reprogramming factors (OCT4, SOX2, KLF4 and cMYC) were mostly positive for EGFP (67%) at an early stage of hiPSC formation. EGFP expression gradually disappeared and mCherry expression increased indicating less miRNAs specific to differentiated cells and expression of miRNAs specific to hESCs. Upon differentiation of the hiPSC into embryoid bodies, a large fraction of these hiPSCs regained EGFP expression and some of those cells became single positive for EGFP. Further differentiation into neural lineages showed distinct structures demarcated by either EGFP or mCherry expression. These findings demonstrate that a miRNA dependent reporter vector can be a useful tool to monitor living cells during reprogramming of hiPSC and subsequent differentiation to lineage specific cells

    Critical role of NK cells rather than V alpha 14(+)NKT cells in lipopolysaccharide-induced lethal shock in mice.

    No full text
    Although macrophages play a central role in the pathogenesis of septic shock, NK1(+) cells have also been implicated. NK1(+) cells comprise two major populations, namely NK cells and V alpha 14(+)NKT cells. To assess the relative contributions of these NK1(+) cells to LPS-induced shock, we compared the susceptibility to LPS-induced shock of beta(2)-microglobulin (beta(2)m)(-/-) mice that are devoid of V alpha 14(+)NKT cells, but not NK cells, with that of wild-type (WT) mice. The results show that beta(2)m(-/-) mice were more susceptible to LPS-induced shock than WT mice. Serum levels of IFN-gamma following LPS challenge were significantly higher in beta(2)m(-/-) mice, and endogenous IFN-gamma neutralization or in vivo depletion of NK1(+) cells rescued beta(2)m(-/-) mice from lethal effects of LPS. Intracellular cytokine staining revealed that NK cells were major IFN-gamma producers. The J alpha 281(-/-) mice that are exclusively devoid of V alpha 14(+)NKT cells were slightly more susceptible to LPS-induced shock than heterozygous littermates. Hence, LPS-induced shock can be induced in the absence of V alpha 14(+)NKT cells and IFN-gamma from NK cells is involved in this mechanism. In WT mice, hierarchic contribution of different cell populations appears likely

    SUMO3 Modification Accelerates the Aggregation of ALS-Linked SOD1 Mutants

    No full text
    <div><p>Mutations in superoxide dismutase 1 (SOD1) are a major cause of familial amyotrophic lateral sclerosis (ALS), whereby the mutant proteins misfold and aggregate to form intracellular inclusions. We report that both small ubiquitin-like modifier (SUMO) 1 and SUMO2/3 modify ALS-linked SOD1 mutant proteins at lysine 75 in a motoneuronal cell line, the cell type affected in ALS. In these cells, SUMO1 modification occurred on both lysine 75 and lysine 9 of SOD1, and modification of ALS-linked SOD1 mutant proteins by SUMO3, rather than by SUMO1, significantly increased the stability of the proteins and accelerated intracellular aggregate formation. These findings suggest the contribution of sumoylation, particularly by SUMO3, to the protein aggregation process underlying the pathogenesis of ALS.</p></div
    corecore