79 research outputs found
A four-oscillator model of seasonally adapted morning and evening activities in Drosophila melanogaster
The fruit fly Drosophila melanogaster exhibits two activity peaks, one in the morning and another in the evening. Because the two peaks change phase depending on the photoperiod they are exposed to, they are convenient for studying responses of the circadian clock to seasonal changes. To explain the phase determination of the two peaks, Drosophila researchers have employed the two-oscillator model, in which two oscillators control the two peaks. The two oscillators reside in different subsets of neurons in the brain, which express clock genes, the so-called clock neurons. However, the mechanism underlying the activity of the two peaks is complex and requires a new model for mechanistic exploration. Here, we hypothesize a four-oscillator model that controls the bimodal rhythms. The four oscillators that reside in different clock neurons regulate activity in the morning and evening and sleep during the midday and at night. In this way, bimodal rhythms are formed by interactions among the four oscillators (two activity and two sleep oscillators), which may judiciously explain the flexible waveform of activity rhythms under different photoperiod conditions. Although still hypothetical, this model would provide a new perspective on the seasonal adaptation of the two activity peaks
Amplitude of circadian rhythms becomes weaken in the north, but there is no cline in the period of rhythm in a beetle
Many species show rhythmicity in activity, from the timing of flowering in plants to that of foraging behavior in animals. The free-running periods and amplitude (sometimes called strength or power) of circadian rhythms are often used as indicators of biological clocks. Many reports have shown that these traits are highly geographically variable, and interestingly, they often show latitudinal or longitudinal clines. In many cases, the higher the latitude is, the longer the free-running circadian period (i.e., period of rhythm) in insects and plants. However, reports of positive correlations between latitude or longitude and circadian rhythm traits, including free-running periods, the power of the rhythm and locomotor activity, are limited to certain taxonomic groups. Therefore, we collected a cosmopolitan stored-product pest species, the red flour beetle Tribolium castaneum, in various parts of Japan and examined its rhythm traits, including the power and period of the rhythm, which were calculated from locomotor activity. The analysis revealed that the power was significantly lower for beetles collected in northern areas than southern areas in Japan. However, it is worth noting that the period of circadian rhythm did not show any clines; specifically, it did not vary among the sampling sites, despite the very large sample size (n = 1585). We discuss why these cline trends were observed in T. castaneum
A Catalog of GAL4 Drivers for Labeling and Manipulating Circadian Clock Neurons in Drosophila melanogaster
Daily rhythms of physiology, metabolism, and behavior are orchestrated by a central circadian clock. In mice, this clock is coordinated by the suprachiasmatic nucleus, which consists of 20,000 neurons, making it challenging to characterize individual neurons. In Drosophila, the clock is controlled by only 150 clock neurons that distribute across the fly's brain. Here, we describe a comprehensive set of genetic drivers to facilitate individual characterization of Drosophila clock neurons. We screened GAL4 lines that were obtained from Drosophila stock centers and identified 63 lines that exhibit expression in subsets of central clock neurons. Furthermore, we generated split-GAL4 lines that exhibit specific expression in subsets of clock neurons such as the 2 DN2 neurons and the 6 LPN neurons. Together with existing driver lines, these newly identified ones are versatile tools that will facilitate a better understanding of the Drosophila central circadian clock
Cryptochrome-dependent and -independent circadian entrainment circuits in Drosophila.
Entrainment to environmental light/dark (LD) cycles is a central function of circadian clocks. In Drosophila, entrainment is achieved by Cryptochrome (CRY) and input from the visual system. During activation by brief light pulses, CRY triggers the degradation of TIMELESS and subsequent shift in circadian phase. This is less important for LD entrainment, leading to questions regarding light input circuits and mechanisms from the visual system. Recent studies show that different subsets of brain pacemaker clock neurons, the morning (M) and evening (E) oscillators, have distinct functions in light entrainment. However, the role of CRY in M and E oscillators for entrainment to LD cycles is unknown. Here, we address this question by selectively expressing CRY in different subsets of clock neurons in a cry-null (cry0) mutant background. We were able to rescue the light entrainment deficits of cry0 mutants by expressing CRY in E oscillators but not in any other clock neurons. Par domain protein 1 molecular oscillations in the E, but not M, cells of cry0 mutants still responded to the LD phase delay. This residual light response was stemming from the visual system because it disappeared when all external photoreceptors were ablated genetically. We concluded that the E oscillators are the targets of light input via CRY and the visual system and are required for normal light entrainment
Genetic variation and phenotypic plasticity in circadian rhythms in an armed beetle, Gnatocerus cornutus (Tenebrionidae)
Circadian rhythms, their free-running periods and the power of the rhythms are often used as indicators of biological clocks, and there is evidence that the free-running periods of circadian rhythms are not affected by environmental factors, such as temperature. However, there are few studies of environmental effects on the power of the rhythms, and it is not clear whether temperature compensation is universal. Additionally, genetic variation and phenotypic plasticity in biological clocks are important for understanding the evolution of biological rhythms, but genetic and plastic effects are rarely investigated. Here, we used 18 isofemale lines (genotypes) of Gnatocerus cornutus to assess rhythms of locomotor activity, while also testing for temperature effects. We found that total activity and the power of the circadian rhythm were affected by interactions between sex and genotype or between sex, genotype and temperature. The males tended to be more active and showed greater increases in activity, but this effect varied across both genotypes and temperatures. The period of activity varied only by genotype and was thus independent of temperature. The complicated genotype–sex–environment interactions we recorded stress the importance of investigating circadian activity in more integrated ways
Dopamine signaling in wake-promoting clock neurons is not required for the normal regulation of sleep in drosophila
Dopamine is a wake-promoting neuromodulator in mammals and fruit flies. In Drosophila melanogaster, the network of clock neurons that drives sleep/activity cycles comprises both wake-promoting and sleep-promoting cell types. The large ventrolateral neurons (l-LNvs) and small ventrolateral neurons (s-LNvs) have been identified as wake-promoting neurons within the clock neuron network. The l-LNvs are innervated by dopaminergic neurons, and earlier work proposed that dopamine signaling raises cAMP levels in the l-LNvs and thus induces excitatory electrical activity (action potential firing), which results in wakefulness and inhibits sleep. Here, we test this hypothesis by combining cAMP imaging and patch-clamp recordings in isolated brains. We find that dopamine application indeed increases cAMP levels and depolarizes the l-LNvs, but, surprisingly, it does not result in increased firing rates. Downregulation of the excitatory D1-like dopamine receptor (Dop1R1) in the l-LNvs and s-LNvs, but not of Dop1R2, abolished the depolarization of l-LNvs in response to dopamine. This indicates that dopamine signals via Dop1R1 to the l-LNvs. Downregulation of Dop1R1 or Dop1R2 in the l-LNvs and s-LNvs does not affect sleep in males. Unexpectedly, we find a moderate decrease of daytime sleep with downregulation of Dop1R1 and of nighttime sleep with downregulation of Dop1R2. Since the l-LNvs do not use Dop1R2 receptors and the s-LNvs also respond to dopamine, we conclude that the s-LNvs are responsible for the observed decrease in nighttime sleep. In summary, dopamine signaling in the wake-promoting LNvs is not required for daytime arousal, but likely promotes nighttime sleep via the s-LNvs.Fil: Fernández, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaFil: Hermann Luibl, Christiane. University Of Würzburg; AlemaniaFil: Peteranderl, Alina. University Of Wuerzburg; AlemaniaFil: Reinhard, Nils. University Of Wuerzburg; AlemaniaFil: Senthilan, Pingkalai R.. University Of Wuerzburg; AlemaniaFil: Hieke, Marie. University Of Wuerzburg; AlemaniaFil: Selcho, Mareike. University Of Wuerzburg; AlemaniaFil: Yoshii, Taishi. Okayama University; JapónFil: Shafer, Orie T.. City University of New York; Estados UnidosFil: Muraro, Nara Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaFil: Helfrich Förster, Charlotte. University Of Wuerzburg; Alemani
The CCHamide1 Neuropeptide Expressed in the Anterior Dorsal Neuron 1 Conveys a Circadian Signal to the Ventral Lateral Neurons in Drosophila melanogaster
The fruit fly Drosophila melanogaster possesses approximately 150 brain clock neurons that control circadian behavioral rhythms. Even though individual clock neurons have self-sustaining oscillators, they interact and synchronize with each other through a network. However, little is known regarding the factors responsible for these network interactions. In this study, we investigated the role of CCHamide1 (CCHa1), a neuropeptide expressed in the anterior dorsal neuron 1 (DN1a), in intercellular communication of the clock neurons. We observed that CCHa1 connects the DN1a clock neurons to the ventral lateral clock neurons (LNv) via the CCHa1 receptor, which is a homolog of the gastrin-releasing peptide receptor playing a role in circadian intercellular communications in mammals. CCHa1 knockout or knockdown flies have a generally low activity level with a special reduction of morning activity. In addition, they exhibit advanced morning activity under light-dark cycles and delayed activity under constant dark conditions, which correlates with an advance/delay of PAR domain Protein 1 (PDP1) oscillations in the small-LNv (s-LNv) neurons that control morning activity. The terminals of the s-LNv neurons show rather high levels of Pigment-dispersing factor (PDF) in the evening, when PDF is low in control flies, suggesting that the knockdown of CCHa1 leads to increased PDF release; PDF signals the other clock neurons and evidently increases the amplitude of their PDP1 cycling. A previous study showed that high-amplitude PDP1 cycling increases the siesta of the flies, and indeed, CCHa1 knockout or knockdown flies exhibit a longer siesta than control flies. The DN1a neurons are known to be receptive to PDF signaling from the s-LNv neurons; thus, our results suggest that the DN1a and s-LNv clock neurons are reciprocally coupled via the neuropeptides CCHa1 and PDF, and this interaction fine-tunes the timing of activity and sleep
Human Cryptochrome-1 Confers Light Independent Biological Activity in Transgenic Drosophila Correlated with Flavin Radical Stability
Cryptochromes are conserved flavoprotein receptors found throughout the biological kingdom with diversified roles in plant development and entrainment of the circadian clock in animals. Light perception is proposed to occur through flavin radical formation that correlates with biological activity in vivo in both plants and Drosophila. By contrast, mammalian (Type II) cryptochromes regulate the circadian clock independently of light, raising the fundamental question of whether mammalian cryptochromes have evolved entirely distinct signaling mechanisms. Here we show by developmental and transcriptome analysis that Homo sapiens cryptochrome - 1 (HsCRY1) confers biological activity in transgenic expressing Drosophila in darkness, that can in some cases be further stimulated by light. In contrast to all other cryptochromes, purified recombinant HsCRY1 protein was stably isolated in the anionic radical flavin state, containing only a small proportion of oxidized flavin which could be reduced by illumination. We conclude that animal Type I and Type II cryptochromes may both have signaling mechanisms involving formation of a flavin radical signaling state, and that light independent activity of Type II cryptochromes is a consequence of dark accumulation of this redox form in vivo rather than of a fundamental difference in signaling mechanism
- …