21 research outputs found

    Plasmodesmata “in Communicado”

    Get PDF
    Cell-to-cell communication is fundamental to multicellular life. For this to occur effectively there must be pathways and dynamic networks for communication. These might depend upon electrical or chemical signals or the mass transfer of molecules between adjacent cells. Molecular communication occurs either via an extra-cellular pathway or through physical structures, called plasmodesmata, that connect the cytoplasm of neighboring cells. Plasmodesmata bridge the rigid physical barrier presented by the cell wall to extend the symplasm from single cells to tissue domains that have functional importance for tissue growth, development, and defense. Although recent years have seen advances in our knowledge of the physical nature of PD, the trafficked molecules, and of the wider processes they affect, our knowledge of PD structure and function is still relatively rudimentary. This article will consider the technical/experimental difficulties hindering PD research and suggest priorities in the future research effort that might advance the field at a significantly faster rate

    Symplastic communication in organ formation and tissue patterning.

    Get PDF
    Communication between cells is a crucial step to coordinate organ formation and tissue patterning. In plants, the intercellular transport of metabolites and signalling molecules occur symplastically through membranous structures (named plasmodesmata) that traverse the cell wall to connect the cytoplasm and endoplasmic reticulum of neighbouring cells. This review aims to highlight the importance of symplastic communication in plant development. We revisit current literature reporting the effects of changing plasmodesmata in cell morphogenesis, organ initiation and meristem maintenance and comment on recent work involving the identification of novel plasmodesmata regulators and of mobile developmental proteins and RNA molecules. New opportunities for unravelling the dynamic regulation and function of plasmodesmata are also discussed.EPSRC (Grant ID: EP/MO27740/1)This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.pbi.2015.10.00

    Fast Pyrolysis of Hemicelluloses into Short-Chain Acids: An Investigation on Concerted Mechanisms

    Get PDF
    The nature of the main primary mechanisms involved in lignocellulosic fast pyrolysis is often assumed to be radical mechanisms. Here we demonstrate that thermal depolymerization of native hemicelluloses can undergo several primary and secondary concerted reactions leading to light oxygenates that can compete with radical mechanisms. To model these reactions at a microscopic level, we used high-level quantum calculations based on functional theory. In parallel, a set of experimental data was collected to confirm the main structural features of extracted and purified hemicelluloses and to describe chemical variations within fast pyrolysis products released from various hemicellulosic fractions at 823 K. In general, the barriers computed at 800 K for pericyclic reactions were found to be reasonably low competing with these of homolytic reactions. The critical role of hydrogen bonding and spatial arrangement on product distribution was clearly demonstrated, stabilizing effects depending greatly on temperature. We reported a useful data set of intrinsic kinetic parameters and a reaction network readily available to complete kinetic models for “primary” and “secondary” fast pyrolysis of hemicelluloses

    Symplastic intercellular connectivity regulates lateral root patterning

    Get PDF
    Cell-to-cell communication coordinates the behavior of individual cells to establish organ patterning and development. Although mobile signals are known to be important in lateral root development, the role of plasmodesmata (PD)-mediated transport in this process has not been investigated. Here, we show that changes in symplastic connectivity accompany and regulate lateral root organogenesis in Arabidopsis. This connectivity is dependent upon callose deposition around PD affecting molecular flux through the channel. Two plasmodesmal-localized β-1,3 glucanases (PdBGs) were identified that regulate callose accumulation and the number and distribution of lateral roots. The fundamental role of PD-associated callose in this process was illustrated by the induction of similar phenotypes in lines with altered callose turnover. Our results show that regulation of callose and cell-to-cell connectivity is critical in determining the pattern of lateral root formation, which influences root architecture and optimal plant performance

    Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures.

    Get PDF
    The properties of (1,3)-β-glucans (i.e., callose) remain largely unknown despite their importance in plant development and defence. Here we use mixtures of (1,3)-β-glucan and cellulose, in ionic liquid solution and hydrogels, as proxies to understand the physico-mechanical properties of callose. We show that after callose addition the stiffness of cellulose hydrogels is reduced at a greater extent than predicted from the ideal mixing rule (i.e., the weighted average of the individual components' properties). In contrast, yield behaviour after the elastic limit is more ductile in cellulose-callose hydrogels compared with sudden failure in 100% cellulose hydrogels. The viscoelastic behaviour and the diffusion of the ions in mixed ionic liquid solutions strongly indicate interactions between the polymers. Fourier-transform infrared analysis suggests that these interactions impact cellulose organisation in hydrogels and cell walls. We conclude that polymer interactions alter the properties of callose-cellulose mixtures beyond what it is expected by ideal mixing

    Unconventional Transport Routes of Soluble and Membrane Proteins and Their Role in Developmental Biology

    Get PDF
    Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing number of leaderless secreted proteins bypassing the Golgi apparatus unveiled the existence of alternative protein secretion pathways. Moreover, other unconventional routes for secretion of soluble or transmembrane proteins with initial endoplasmic reticulum localization were identified. Furthermore, other proteins normally functioning in conventional membrane traffic or in the biogenesis of unique plant/fungi organelles or in plasmodesmata transport seem to be involved in unconventional secretory pathways. These alternative pathways are functionally related to biotic stress and development, and are becoming more and more important in cell biology studies in yeast, mammalian cells and in plants. The city of Lecce hosted specialists working on mammals, plants and microorganisms for the inaugural meeting on "Unconventional Protein and Membrane Traffic" (UPMT) during 4-7 October 2016. The main aim of the meeting was to include the highest number of topics, summarized in this report, related to the unconventional transport routes of protein and membranes.The UPMT committee is grateful to the sponsors supporting the meeting: The Company of Biologists, Fondazione Puglia, the American Society of Plant Biologists, the Biochemical Society, University of Salento, CNR-Nanotec, MDPI-International Journal of Molecular Science and Merck

    Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils

    Get PDF
    Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.Bourdon et al. demonstrate the possibility to ectopically synthesize callose, a polymer restricted to primary cell walls, into Arabidopsis and aspen secondary cell walls to manipulate their ultrastructure and ultimately reduce their recalcitrance

    Arabidopsis Plasmodesmal Proteome

    Get PDF
    The multicellular nature of plants requires that cells should communicate in order to coordinate essential functions. This is achieved in part by molecular flux through pores in the cell wall, called plasmodesmata. We describe the proteomic analysis of plasmodesmata purified from the walls of Arabidopsis suspension cells. Isolated plasmodesmata were seen as membrane-rich structures largely devoid of immunoreactive markers for the plasma membrane, endoplasmic reticulum and cytoplasmic components. Using nano-liquid chromatography and an Orbitrap ion-trap tandem mass spectrometer, 1341 proteins were identified. We refer to this list as the plasmodesmata- or PD-proteome. Relative to other cell wall proteomes, the PD-proteome is depleted in wall proteins and enriched for membrane proteins, but still has a significant number (35%) of putative cytoplasmic contaminants, probably reflecting the sensitivity of the proteomic detection system. To validate the PD-proteome we searched for known plasmodesmal proteins and used molecular and cell biological techniques to identify novel putative plasmodesmal proteins from a small subset of candidates. The PD-proteome contained known plasmodesmal proteins and some inferred plasmodesmal proteins, based upon sequence or functional homology with examples identified in different plant systems. Many of these had a membrane association reflecting the membranous nature of isolated structures. Exploiting this connection we analysed a sample of the abundant receptor-like class of membrane proteins and a small random selection of other membrane proteins for their ability to target plasmodesmata as fluorescently-tagged fusion proteins. From 15 candidates we identified three receptor-like kinases, a tetraspanin and a protein of unknown function as novel potential plasmodesmal proteins. Together with published work, these data suggest that the membranous elements in plasmodesmata may be rich in receptor-like functions, and they validate the content of the PD-proteome as a valuable resource for the further uncovering of the structure and function of plasmodesmata as key components in cell-to-cell communication in plants
    corecore