6,792 research outputs found
Measurements of bremsstrahlung produced by 0.75 and 1.25 mev electrons incident on typical apollo wall sections
Bremsstrahlung measurements on Apollo spacecraft wall sections irradiated with 0.75 and 1.25 MeV electrons from electron accelerato
Slice Stretching Effects for Maximal Slicing of a Schwarzschild Black Hole
Slice stretching effects such as slice sucking and slice wrapping arise when
foliating the extended Schwarzschild spacetime with maximal slices. For
arbitrary spatial coordinates these effects can be quantified in the context of
boundary conditions where the lapse arises as a linear combination of odd and
even lapse. Favorable boundary conditions are then derived which make the
overall slice stretching occur late in numerical simulations. Allowing the
lapse to become negative, this requirement leads to lapse functions which
approach at late times the odd lapse corresponding to the static Schwarzschild
metric. Demanding in addition that a numerically favorable lapse remains
non-negative, as result the average of odd and even lapse is obtained. At late
times the lapse with zero gradient at the puncture arising for the puncture
evolution is precisely of this form. Finally, analytic arguments are given on
how slice stretching effects can be avoided. Here the excision technique and
the working mechanism of the shift function are studied in detail.Comment: 16 pages, 4 figures, revised version including a study on how slice
stretching can be avoided by using excision and/or shift
High-Redshift Superclustering of QSO Absorption Line Systems on 100 Mpc Scales
We have analyzed the clustering of C IV absorption line systems in an
extensive new catalog of heavy element QSO absorbers. The catalog permits
exploration of clustering over a large range in both scale (from about 1 to
over 300 Mpc) and redshift (z from 1.2 to 4.5). We find significant evidence
(5.0 sigma) that C IV absorbers are clustered on comoving scales of 100 Mpc and
less --- similar to the size of voids and walls found in galaxy redshift
surveys of the local universe --- with a mean correlation function over these scales. We find, on these scales, that the mean
correlation function at low (z=1.7), medium (z=2.4), and high redshift (z=3.0)
is , , and , respectively.
Thus, the superclustering is present even at high redshift; furthermore, it
does not appear that the superclustering scale, in comoving coordinates, has
changed significantly since then. We find 7 QSOs with rich groups of absorbers
(potential superclusters) that account for a significant portion of the
clustering signal, with 2 at redshift . We find that the
superclustering is just as evident if we take instead of 0.5;
however, the inferred scale of clustering is then 240 Mpc , which is larger
than the largest scales of clustering known at present. This discrepancy may be
indicative of a larger value of , and hence . The evolution of
the correlation function on 50 Mpc scales is consistent with that expected in
cosmologies with density parameter ranging from 0.1 to 1.
Finally, we find no evidence for clustering on scales greater than 100 Mpc
() or 240 Mpc ().Comment: 16 LaTeX pages with 3 encapsulated Postscript figures included, uses
AASTeX (v. 4.0) available at ftp://ftp.aas.org/pubs/ , to appear in The
Astrophysical Journal Letter
Analytical and Experimental Evaluation of the Heat Transfer Distribution over the Surfaces of Turbine Vanes
Three airfoil data sets were selected for use in evaluating currently available analytical models for predicting airfoil surface heat transfer distributions in a 2-D flow field. Two additional airfoils, representative of highly loaded, low solidity airfoils currently being designed, were selected for cascade testing at simulated engine conditions. Some 2-D analytical methods were examined and a version of the STAN5 boundary layer code was chosen for modification. The final form of the method utilized a time dependent, transonic inviscid cascade code coupled to a modified version of the STAN5 boundary layer code featuring zero order turbulence modeling. The boundary layer code is structured to accommodate a full spectrum of empirical correlations addressing the coupled influences of pressure gradient, airfoil curvature, and free-stream turbulence on airfoil surface heat transfer distribution and boundary layer transitional behavior. Comparison of pedictions made with the model to the data base indicates a significant improvement in predictive capability
The Measure of Cosmological Parameters
New, large, ground and space telescopes are contributing to an exciting and
rapid period of growth in observational cosmology. The subject is now far from
its earlier days of being data-starved and unconstrained, and new data are
fueling a healthy interplay between observations and experiment and theory. I
briefly review here the status of measurements of a number of quantities of
interest in cosmology: the Hubble constant, the total mass-energy density, the
matter density, the cosmological constant or dark energy component, and the
total optical background light.Comment: 12 pages, 4 figures, to be published in "2001: A Spacetime Odyssey:
Proceedings of the Inaugural Conference of the Michigan Center for
Theoretical Physics", Michael J. Duff & James T. Liu, eds., (World
Scientific, Singapore), in pres
Self-Renormalization of the Classical Quasilocal Energy
Pointlike objects cause many of the divergences that afflict physical
theories. For instance, the gravitational binding energy of a point particle in
Newtonian mechanics is infinite. In general relativity, the analog of a point
particle is a black hole and the notion of binding energy must be replaced by
quasilocal energy. The quasilocal energy (QLE) derived by York, and elaborated
by Brown and York, is finite outside the horizon but it was not considered how
to evaluate it inside the horizon. We present a prescription for finding the
QLE inside a horizon, and show that it is finite at the singularity for a
variety of types of black hole. The energy is typically concentrated just
inside the horizon, not at the central singularity.Comment: 7 pages, 4 figure
Local and global properties of conformally flat initial data for black hole collisions
We study physical properties of conformal initial value data for single and
binary black hole configurations obtained using conformal-imaging and
conformal-puncture methods. We investigate how the total mass M_tot of a
dataset with two black holes depends on the configuration of linear or angular
momentum and separation of the holes. The asymptotic behavior of M_tot with
increasing separation allows us to make conclusions about an unphysical
``junk'' gravitation field introduced in the solutions by the conformal
approaches. We also calculate the spatial distribution of scalar invariants of
the Riemann tensor which determine the gravitational tidal forces. For single
black hole configurations, these are compared to known analytical solutions.
Spatial distribution of the invariants allows us to make certain conclusions
about the local distribution of the additional field in the numerical datasets
Initial Data and Coordinates for Multiple Black Hole Systems
We present here an alternative approach to data setting for spacetimes with
multiple moving black holes generalizing the Kerr-Schild form for rotating or
non-rotating single black holes to multiple moving holes. Because this scheme
preserves the Kerr-Schild form near the holes, it selects out the behaviour of
null rays near the holes, may simplify horizon tracking, and may prove useful
in computational applications. For computational evolution, a discussion of
coordinates (lapse function and shift vector) is given which preserves some of
the properties of the single-hole Kerr-Schild form
Towards a Singularity-Proof Scheme in Numerical Relativity
Progress in numerical relativity has been hindered for 30 years because of
the difficulties of avoiding spacetime singularities in numerical evolution. We
propose a scheme which excises a region inside an apparent horizon containing
the singularity. Two major ingredients of the scheme are the use of a
horizon-locking coordinate and a finite differencing which respects the causal
structure of the spacetime. Encouraging results of the scheme in the spherical
collapse case are given.Comment: 9 page
- …