1,925 research outputs found

    Excision boundary conditions for black hole initial data

    Get PDF
    We define and extensively test a set of boundary conditions that can be applied at black hole excision surfaces when the Hamiltonian and momentum constraints of general relativity are solved within the conformal thin-sandwich formalism. These boundary conditions have been designed to result in black holes that are in quasiequilibrium and are completely general in the sense that they can be applied with any conformal three-geometry and slicing condition. Furthermore, we show that they retain precisely the freedom to specify an arbitrary spin on each black hole. Interestingly, we have been unable to find a boundary condition on the lapse that can be derived from a quasiequilibrium condition. Rather, we find evidence that the lapse boundary condition is part of the initial temporal gauge choice. To test these boundary conditions, we have extensively explored the case of a single black hole and the case of a binary system of equal-mass black holes, including the computation of quasi-circular orbits and the determination of the inner-most stable circular orbit. Our tests show that the boundary conditions work well.Comment: 23 pages, 23 figures, revtex4, corrected typos, added reference, minor content changes including additional post-Newtonian comparison. Version accepted by PR

    Robust evolution system for Numerical Relativity

    Get PDF
    The paper combines theoretical and applied ideas which have been previously considered separately into a single set of evolution equations for Numerical Relativity. New numerical ingredients are presented which avoid gauge pathologies and allow one to perform robust 3D calculations. The potential of the resulting numerical code is demonstrated by using the Schwarzschild black hole as a test-bed. Its evolution can be followed up to times greater than one hundred black hole masses.Comment: 11 pages, 4 figures; figure correcte

    Towards a Singularity-Proof Scheme in Numerical Relativity

    Full text link
    Progress in numerical relativity has been hindered for 30 years because of the difficulties of avoiding spacetime singularities in numerical evolution. We propose a scheme which excises a region inside an apparent horizon containing the singularity. Two major ingredients of the scheme are the use of a horizon-locking coordinate and a finite differencing which respects the causal structure of the spacetime. Encouraging results of the scheme in the spherical collapse case are given.Comment: 9 page

    Collisions of boosted black holes: perturbation theory prediction of gravitational radiation

    Get PDF
    We consider general relativistic Cauchy data representing two nonspinning, equal-mass black holes boosted toward each other. When the black holes are close enough to each other and their momentum is sufficiently high, an encompassing apparent horizon is present so the system can be viewed as a single, perturbed black hole. We employ gauge-invariant perturbation theory, and integrate the Zerilli equation to analyze these time-asymmetric data sets and compute gravitational wave forms and emitted energies. When coupled with a simple Newtonian analysis of the infall trajectory, we find striking agreement between the perturbation calculation of emitted energies and the results of fully general relativistic numerical simulations of time-symmetric initial data.Comment: 5 pages (RevTex 3.0 with 3 uuencoded figures), CRSR-107

    Adaptive mesh refinement approach to construction of initial data for black hole collisions

    Get PDF
    The initial data for black hole collisions is constructed using a conformal-imaging approach and a new adaptive mesh refinement technique, a fully threaded tree (FTT). We developed a second-order accurate approach to the solution of the constraint equations on a non-uniformly refined high resolution Cartesian mesh including second-order accurate treatment of boundary conditions at the black hole throats. Results of test computations show convergence of the solution as the numerical resolution is increased. FTT-based mesh refinement reduces the required memory and computer time by several orders of magnitude compared to a uniform grid. This opens up the possibility of using Cartesian meshes for very high resolution simulations of black hole collisions.Comment: 13 pages, 11 figure

    Cloud-Chamber Observations of Some Unusual Neutral V Particles Having Light Secondaries

    Get PDF
    From six cloud-chamber photographs of unusual V0 decay events, the following conclusions are drawn: (1) there is a neutral V particle that decays into two particles lighter than κ mesons with a Q value too small to be consistent with a θ0(π, π, 214 Mev) particle; (2) some of these events cannot be explained in terms of the decay of a τ0(π0, π-, π+, Q∼80 Mev) particle; (3) these events can be explained by any one of a number of three-body decay schemes, but two different types of V particles must be postulated if two-body decays are assumed

    Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity

    Get PDF
    We study the effects of magnetic fields on the evolution of differentially rotating neutron stars, which can form in stellar core collapse or binary neutron star coalescence. Magnetic braking and the magnetorotational instability (MRI) both redistribute angular momentum; the outcome of the evolution depends on the star's mass and spin. Simulations are carried out in axisymmetry using our recently developed codes which integrate the coupled Einstein-Maxwell-MHD equations. For initial data, we consider three categories of differentially rotating, equilibrium configurations, which we label normal, hypermassive and ultraspinning. Hypermassive stars have rest masses exceeding the mass limit for uniform rotation. Ultraspinning stars are not hypermassive, but have angular momentum exceeding the maximum for uniform rotation at the same rest mass. We show that a normal star will evolve to a uniformly rotating equilibrium configuration. An ultraspinning star evolves to an equilibrium state consisting of a nearly uniformly rotating central core, surrounded by a differentially rotating torus with constant angular velocity along magnetic field lines, so that differential rotation ceases to wind the magnetic field. In addition, the final state is stable against the MRI, although it has differential rotation. For a hypermassive neutron star, the MHD-driven angular momentum transport leads to catastrophic collapse of the core. The resulting rotating black hole is surrounded by a hot, massive, magnetized torus undergoing quasistationary accretion, and a magnetic field collimated along the spin axis--a promising candidate for the central engine of a short gamma-ray burst. (Abridged)Comment: 27 pages, 30 figure

    Thermal Hair of Quantum Black Hole

    Get PDF
    We investigate the possibility of statistical explanation of the black hole entropy by counting quasi-bounded modes of thermal fluctuation in two dimensional black hole spacetime. The black hole concerned is quantum in the sense that it is in thermal equilibrium with its Hawking radiation. It is shown that the fluctuation around such a black hole obeys a wave equation with a potential whose peaks are located near the black hole and which is caused by quantum effect. We can construct models in which the potential in the above sense has several positive peaks and there are quai-bounded modes confined between these peaks. This suggests that these modes contribute to the black hole entropy. However it is shown that the entropy associated with these modes dose not obey the ordinary area law. Therefore we can call these modes as an additional thermal hair of the quantum black hole.Comment: LaTeX, 12 pages, 14 postscript figures, submitted to Phys. Rev.

    Can a combination of the conformal thin-sandwich and puncture methods yield binary black hole solutions in quasi-equilibrium?

    Get PDF
    We consider combining two important methods for constructing quasi-equilibrium initial data for binary black holes: the conformal thin-sandwich formalism and the puncture method. The former seeks to enforce stationarity in the conformal three-metric and the latter attempts to avoid internal boundaries, like minimal surfaces or apparent horizons. We show that these two methods make partially conflicting requirements on the boundary conditions that determine the time slices. In particular, it does not seem possible to construct slices that are quasi-stationary and avoid physical singularities and simultaneously are connected by an everywhere positive lapse function, a condition which must obtain if internal boundaries are to be avoided. Some relaxation of these conflicting requirements may yield a soluble system, but some of the advantages that were sought in combining these approaches will be lost.Comment: 8 pages, LaTeX2e, 2 postscript figure

    Magnetohydrodynamics in full general relativity: Formulation and tests

    Full text link
    A new implementation for magnetohydrodynamics (MHD) simulations in full general relativity (involving dynamical spacetimes) is presented. In our implementation, Einstein's evolution equations are evolved by a BSSN formalism, MHD equations by a high-resolution central scheme, and induction equation by a constraint transport method. We perform numerical simulations for standard test problems in relativistic MHD, including special relativistic magnetized shocks, general relativistic magnetized Bondi flow in stationary spacetime, and a longterm evolution for self-gravitating system composed of a neutron star and a magnetized disk in full general relativity. In the final test, we illustrate that our implementation can follow winding-up of the magnetic field lines of magnetized and differentially rotating accretion disks around a compact object until saturation, after which magnetically driven wind and angular momentum transport inside the disk turn on.Comment: 28 pages, to be published in Phys. Rev.
    • …
    corecore