204 research outputs found

    Optimal Detection Range of RFID Tag for RFID-based Positioning System Using the k-NN Algorithm

    Get PDF
    Positioning technology to track a moving object is an important and essential component of ubiquitous computing environments and applications. An RFID-based positioning system using the k-nearest neighbor (k-NN) algorithm can determine the position of a moving reader from observed reference data. In this study, the optimal detection range of an RFID-based positioning system was determined on the principle that tag spacing can be derived from the detection range. It was assumed that reference tags without signal strength information are regularly distributed in 1-, 2- and 3-dimensional spaces. The optimal detection range was determined, through analytical and numerical approaches, to be 125% of the tag-spacing distance in 1-dimensional space. Through numerical approaches, the range was 134% in 2-dimensional space, 143% in 3-dimensional space

    A New ID-based Signature with Batch Verification

    Get PDF
    An identity (ID)-based signature scheme allows any pair of users to communicate securely and to verify each other\u27s signatures without exchanging public key certificates. We have several ID-based signatures based on the discrete logarithm problem. While they have an advantage that the system secret can be shared by several parties through threshold schemes, they have a critical disadvantage in efficiency. To enhance the efficiency of verification, we propose a new ID-based signature scheme that allows batch verification of multiple signatures. The verification cost of the proposed signature scheme for kk signatures is almost constant with minimal security loss and when a new signature by a different signer is added to the batch verification, the additional cost is almost a half of that of a single signature. We prove that the proposed signature scheme is secure against existential forgery under adaptively chosen message and ID attack in the random oracle model and show why other ID-based signature schemes are hard to achieve these properties

    Dual Effect of Chrysanthemum indicum

    Get PDF
    The risk of bone-related diseases increases due to the imbalance between bone resorption and bone formation by osteoclasts and osteoblasts, respectively. The goal in the development of antiosteoporotic treatments is an agent that will improve bone through simultaneous osteoblast stimulation and osteoclast inhibition without undesirable side effects. To achieve this goal, numerous studies have been performed to identify novel approaches using natural oriental herbs to treat bone metabolic diseases. In the present study, we investigated the effect of Chrysanthemum indicum extract (CIE) on the differentiation of osteoclastic and osteoblastic cells. CIE inhibited the formation of TRAP-positive mature osteoclasts and of filamentous-actin rings and disrupted the bone-resorbing activity of mature osteoclasts in a dose-dependent manner. CIE strongly inhibited Akt, GSK3β, and IκB phosphorylation in RANKL-stimulated bone marrow macrophages and did not show any effects on MAP kinases, including p38, ERK, and JNK. Interestingly, CIE also enhanced primary osteoblast differentiation via upregulation of the expression of alkaline phosphatase and the level of extracellular calcium concentrations during the early and terminal stages of differentiation, respectively. Our results revealed that CIE could have a potential therapeutic role in bone-related disorders through its dual effects on osteoclast and osteoblast differentiation

    Molecular mechanisms of heptaplatin effective against cisplatin-resistant cancer cell lines: less involvement of metallothionein

    Get PDF
    BACKGROUND: Heptaplatin is a new platinum derivative with anticancer activity against various cancer cell lines, including cisplatin-resistant cancer cell lines (Cancer Chemother Pharmacol 1995; 35: 441). METHODS: Molecular mechanisms of heptaplatin effective against cisplatin-resistant cancer cell lines has been investigated in connection with metallothionein (MT). Cytotoxicity was determined by an MTT assay. MT mRNA, was determined by RT-PCR assay. Transfection study was carried out to examine the function of MT. RESULTS: Of various gastric cancer cell lines, SNU-638 and SNU-601 showed the highest and lowest levels of MT mRNA, respectively, showing 80-fold difference. The IC(50 )values of SNU-638 to cisplatin, carboplatin and heptaplatin were 11.2-fold, 5.1-fold and 2.0-fold greater than those of SNU-601, respectively. Heptaplatin was more effective against cisplatin-resistant and MT-transfected gastric cancer sublines than cisplatin or carboplatin was. In addition, heptaplatin attenuated cadmium, but not zinc, induction of MT. CONCLUSION: These results indicate that molecular mechanisms of heptaplatin effective against cisplatin-resistant gastric cancer sublines is at least in part due to the less involvement of MT in heptaplatin resistance as well as its attenuation of MT induction

    Autosomal dominant transmission of complicated hereditary spastic paraplegia due to a dominant negative mutation of KIF1A, SPG30 gene.

    Get PDF
    KIF1A is a brain-specific anterograde motor protein that transports cargoes towards the plus-ends of microtubules. Many variants of the KIF1A gene have been associated with neurodegenerative diseases and developmental delay. Homozygous mutations of KIF1A have been identified in a recessive subtype of hereditary spastic paraplegia (HSP), SPG30. In addition, KIF1A mutations have been found in pure HSP with autosomal dominant inheritance. Here we report the first case of familial complicated HSP with a KIF1A mutation transmitted in autosomal dominant inheritance. A heterozygous p.T258M mutation in KIF1A was found in a Korean family through targeted exome sequencing. They displayed phenotypes of mild intellectual disability with language delay, epilepsy, optic nerve atrophy, thinning of corpus callosum, periventricular white matter lesion, and microcephaly. A structural modeling revealed that the p.T258M mutation disrupted the binding of KIF1A motor domain to microtubules and its movement along microtubules. Assays of peripheral accumulation and proximal distribution of KIF1A motor indicated that the KIF1A motor domain with p.T258M mutation has reduced motor activity and exerts a dominant negative effect on wild-type KIF1A. These results suggest that the p.T258M mutation suppresses KIF1A motor activity and induces complicated HSP accompanying intellectual disability transmitted in autosomal dominant inheritance. © The Author(s) 20171

    Detection of an intermediate during the unfolding process of the dimeric ketosteroid isomerase

    Get PDF
    AbstractFailure to detect the intermediate in spite of its existence often leads to the conclusion that two-state transition in the unfolding process of the protein can be justified. In contrast to the previous equilibrium unfolding experiment fitted to a two-state model by circular dichroism and fluorescence spectroscopies, an equilibrium unfolding intermediate of a dimeric ketosteroid isomerase (KSI) could be detected by small angle X-ray scattering (SAXS) and analytical ultracentrifugation. The sizes of KSI were determined to be 18.7Å in 0M urea, 17.3Å in 5.2M urea, and 25.1Å in 7M urea by SAXS. The size of KSI in 5.2M urea was significantly decreased compared with those in 0M and 7M urea, suggesting the existence of a compact intermediate. Sedimentation velocity as obtained by ultracentrifugation confirmed that KSI in 5.2M urea is distinctly different from native and fully-unfolded forms. The sizes measured by pulse field gradient nuclear magnetic resonance (NMR) spectroscopy were consistent with those obtained by SAXS. Discrepancy of equilibrium unfolding studies between size measurement methods and optical spectroscopies might be due to the failure in detecting the intermediate by optical spectroscopic methods. Further characterization of the intermediate using 1H NMR spectroscopy and Kratky plot supported the existence of a partially-folded form of KSI which is distinct from those of native and fully-unfolded KSIs. Taken together, our results suggest that the formation of a compact intermediate should precede the association of monomers prior to the dimerization process during the folding of KSI

    The anti-angiogenic herbal composition Ob-X inhibits adipose tissue growth in obese mice

    Get PDF
    Objective: The growth and development of adipose tissue are thought to be associated with angiogenesis and extracellular matrix remodeling. Since the composition of the herbal extract called Ob-X has been shown to have both anti-angiogenic and matrix metalloproteinase (MMP)-inhibiting activities, we hypothesized that growth of adipose tissue can be regulated by Ob-X. Materials and Methods: The effects of Ob-X on angiogenesis and extracellular matrix remodeling were measured using in vitro and ex vivo assays. The effects of Ob-X on adipose tissue growth were investigated with nutritionally obese mice. Results: Ob-X inhibited angiogenesis in a dose-dependent manner in the human umbilical vein endothelial cell (HUVEC) tube formation assay in vitro and the rat aortic ring assay ex vivo. Ob-X also suppressed MMP activity in vitro. Administration of Ob-X to high fat diet-induced obese mice produced significant reductions in body weight gain and adipose tissue mass, compared to controls. The mass of both subcutaneous (SC) and visceral (VSC) fat was reduced in Ob-X-treated mice. The size of adipocytes in SC and VSC adipose tissues was also significantly reduced in Ob-X-treated mice. Ob-X treatment decreased the blood vessel density and MMP activity in VSC adipose tissues of nutritionally obese mice. Ob-X reduced mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas it increased mRNA levels of angiogenesis inhibitors (TSP-1 and TIMP-2) in SC and VSC adipose tissues of nutritionally obese mice. Conclusion: Ob-X, which has anti-angiogenic and MMP-inhibitory activities, reduces adipose tissue mass in nutritionally induced obese mice, providing evidence that adipose tissue growth and development may be prevented by inhibiting angiogenesis. In addition, these data suggest that regulation of adipose tissue growth by inhibiting angiogenesis may alter the expression of genes involved in angiogenesis and the MMP system

    Syntactic Comprehension of Relative Clauses and Center Embedding Using Pseudowords

    Get PDF
    Relative clause (RC) formation and center embedding (CE) are two primary syntactic operations fundamental for creating and understanding complex sentences. Ample evidence from previous cross-linguistic studies has revealed several similarities and differences between RC and CE. However, it is not easy to investigate the effect of pure syntactic constraints for RC and CE without the interference of semantic and pragmatic interactions. Here, we show how readers process CE and RC using a self-paced reading task in Korean. More interestingly, we adopted a novel self-paced pseudoword reading task to exploit syntactic operations of the RC and CE, eliminating the semantic and pragmatic interference in sentence comprehension. Our results showed that the main effects of RC and CE conform to previous studies. Furthermore, we found a facilitation effect of sentence comprehension when we combined an RC and CE in a complex sentence. Our study provides a valuable insight into how the purely syntactic processing of RC and CE assists comprehension of complex sentences. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.1
    corecore