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Abstract. An identity (ID)-based signature scheme allows any pair of users to com-
municate securely and to verify each other’s signatures without exchanging public key
certificates. We have several ID-based signatures based on the discrete logarithm prob-
lem. While they have an advantage that the system secret can be shared by several parties
through threshold schemes, they have a critical disadvantage in efficiency. To enhance
the efficiency of verification, we propose a new ID-based signature scheme that allows
batch verification of multiple signatures. The verification cost of the proposed signature
scheme for k signatures is almost constant with minimal security loss and when a new
signature by a different signer is added to the batch verification, the additional cost is
almost a half of that of a single signature. We prove that the proposed signature scheme
is secure against existential forgery under adaptively chosen message and ID attack in
the random oracle model and show why other ID-based signature schemes are hard to
achieve these properties.
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1 Introduction

In 1984, Shamir proposed a new model for public key cryptography, called identity (ID)-
based encryption and signature schemes, to simplify key management procedures of
certificate-based public key infrastructures (PKIs) [Sha84]. Since then, several ID-based
encryption and signature schemes have been proposed based on integer factorization
problem [DG86,Tan87,TI89,MY91]. While ID-based signature has advantages for key
management and key recovery, it has a disadvantage that the signer’s key is shared
with the private key generator [FS86,FFS88]. This problem can be alleviated in the
signatures based on the discrete logarithm problem (DLP) since the secret key can be
shared by several parties through threshold schemes. There have been several ID-based
signatures with these properties using pairings in elliptic curves [Hess02,Pat02,CC03].

In spite of several advantages of ID-based signatures schemes based on pairings, they
suffer some restriction on applications due to efficiency problem: Their signature verifi-
cations are ten times or one hundred times slower than that of DSS or RSA [BKLS02].
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This problem may be critical in some applications such as electronic commerce or
banking service in which one server has to verify many signatures simultaneously.
In order to enhance the efficiency of verification process, we consider batch verifica-
tion of several signatures. Unfortunately, it appears that previous signatures such as
[Hess02,Pat02,CC03] are not secure for batch verification of signatures signed by differ-
ent users. In this paper, we propose a new signature scheme which allows secure batch
verifications. Using the new scheme, we can reduce the signature size into almost a
half and efficiently verify multiple signatures. The verification cost of k signatures by a
single signer is one signature verification plus k elliptic curve addition and k hashing.
When a new signature by a different signer is added, additional verification cost is
almost a half of that of ordinary verification of a single signature.

We prove that the proposed signature scheme is secure against existential forgery
for a chosen ID under adaptively chosen message and ID attack in the random oracle
model. More precisely, we can show that if there is an attacker who can forge a set of
signatures to pass batch verification, then the computational Diffie-Hellman problem
(CDHP) is solved. Note that we do not require that one signature in the set should
have a signer with a fixed ID as in non-ID-based model. The proof relies on the forking
lemma and the property of the proposed scheme whose random part is removable by
the simulator. To obtain a solution of a given CDHP from the forged signatures, we
have to get rid of the all commitments simultaneously by the oracle replay. However,
batch verification contains several random commitments and the usual forking lemma
can remove only one commitment. That is the reason why similar security proof fails for
other ID-based signature schemes and the Schnorr scheme based on the DLP. Further,
we show that they are not secure for batch verification.

Batch verification was devised to improve the efficiency of verification process for
multiple signatures and has been studied by many researchers. The homomorphic prop-
erty of the RSA signature scheme admits a weak batch verification called screen-
ing [Fiat89,BGR98]. Screening means that a signature passed the batch verification
is an already signed one by the legitimate signer at least one time at the past. In the
DLP case, most efforts have been devoted to simultaneous verifications of modular ex-
ponentiations [NMVR96,MN96,BGR98,BP00]. This method is independent of specific
signature schemes, but the efficiency gain is not so much from the sum of individual
verifications when the security loss goes to zero. In 2003, Boneh et al. proposed aggre-
gate signatures (BGLS scheme) from bilinear maps in which multiple signatures can be
aggregated into one signature [BGLS03]. In the BGLS scheme, the verification cost of n
signatures is almost constant when signed by a single signer and a half of n verifications
when signed by different signers. Our signature scheme is the first ID-based signature
which admits efficient batch verifications. The gain of batch verifications is almost the
same with the BGLS scheme. While the BGLS compresses n signatures into one, the
proposed one could compress only a half of signatures.
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The rest of the paper is organized as follows: In Section 2, we introduce hard prob-
lems which our scheme relies on. In Section 3, we present a new ID-based signature
scheme and its enhanced verification with rigorous security proof. We also discuss why
other ID-based signatures and the Schnorr signature fail to provide secure batch verifi-
cation. In Section 4, we analyze the efficiency of our scheme and its batch verification.
We conclude in Section 5.

2 Preliminary

2.1 Bilinear Maps

Consider an additive cyclic group G of prime order ` and a cyclic multiplicative group
V . Let e : G×G → V be a map which satisfies the following properties.

1. Bilinear For any aP, bP ∈ G, e(aP, bP ) = e(P, P )ab.
2. Non-degenerate If e(P,Q) = 1V for all P (or Q) in G, then Q (or P ) is the

identity of G, respectively.
3. Efficient There exists an efficient algorithm to compute the map.

We call such a bilinear map as an admissible bilinear pairing.
The Weil pairing and Tate pairing in elliptic curve give good implementations of

the admissible bilinear pairing. Let E be an elliptic curve over Fq where q = pn and
p is a prime. For a prime ` and an ` torsion subgroup E[`] of E, we define a Weil
pairing e : E[`] × E[`] → F∗qα for suitable α. Now let G = E(Fq)[`] and define a map
ê : G×G → F∗qα , where ê(P, Q) = e(P, φ(Q)) and φ is an automorphism over G. Then ê
is an efficiently computable non-degenerate bilinear map. The Tate pairing has similar
properties and is more efficient than the Weil pairing. For the details, refer to [BLS01].

2.2 Some Problems

Let G be a cyclic group of prime order ` and P a generator of G.

1. The decisional Diffie-Hellman Problem (DDHP) is to decide whether c = ab in Z/`Z
for given P, aP, bP, cP ∈ G. If so, (P, aP, bP, cP ) is called a valid Diffie-Hellman
(DH) tuple.

2. The computation Diffie-Hellman Problem (CDHP) is to compute abP for given
P, aP, bP ∈ G.

Now we define a gap Diffie-Hellman (GDH) group.

Definition 1 A group G is a gap Diffie-Hellman (GDH) group if the decisional Diffie-
Hellman problem in G can be efficiently computable and there exists no algorithm which
can solve the computational Diffie-Hellman problem in G with non-negligible probability
within polynomial time.
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If we have an admissible bilinear pairing e in G, we can solve the DDHP in G efficiently
as follows:

(P, aP, bP, cP ) is a valid DH tuple ⇔ e(aP, bP ) = e(P, cP ).

Hence an elliptic curve becomes an instance of a GDH group if the Weil (or the Tate)
pairing is efficiently computable and the CDHP is sufficiently hard on the curve.

3 A New ID-based Signature

From now on, we assume that G is a GDH group generated by P , whose order is a
large prime `.

3.1 An ID-based Signature

This scheme consists of four algorithms: Setup, Extract, Signing and Verification.

Setup Given a GDH group G and its generator P , pick a random s ∈ Z/`Z and
set Ppub = sP . Choose two hash functions H1 : {0, 1}∗ × G → (Z/`Z)∗ and H2 :
{0, 1}∗ → G∗. The system parameter is (P, Ppub,H1,H2). The master key is s.

Extract Given an identity ID, the algorithm computes QID = H2(ID) and DID =
sH2(ID) and outputs DID as a private key of the identity ID corresponding to
QID = H2(ID).

Signing Given a secret key DID and a message m, pick a random number r ∈ Z/`Z and
output a signature σ = (U, V ) where U = rP , h = H1(m,U), and V = rQID+hDID.

Verification Given a signature σ = (U, V ) of a message m for an identity ID, compute
h = H1(m,U). The signature is accepted if and only if (P,QID, U + hPpub, V ) is a
valid Diffie-Hellman tuple.

3.2 Security Proof

Our ID-based signature scheme contains a random value in its signature. We cannot
directly reduce the security of our scheme to the hardness of the CDLP because of such
a random value. To remove the random value in the forged signature produced by a
forger F , we use the oracle replay method and the forking lemma [PS00] as in [CC03].

At first, we can reduce the adaptively chosen ID attack to the given ID attack by
the following lemma.

Lemma 1 ([CC03, Lemma 1]). If there is a forger F0 for an existential forgery
under adaptively chosen message and ID attack to our scheme within time bound T0

with probability ε0, then there is a forger F for an existential forgery under an adaptively
chosen message and given ID attack within time bound T ≤ T0 with the probability
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ε ≤ ε0(1 − 1
` )/qH2, where qH2 is the maximum number of queries to H2 asked by F0

and ` is a security parameter. In addition, the number of queries to hash functions,
Extract and Signing asked by F0 are the same as those of F .

Theorem 1. Let F0 be a forger which performs, within a time bound T0, an existential
forgery under an adaptively chosen message and ID attack against our ID-based scheme
with probability ε0 in random oracle model. The forger F0 can ask queries to the ora-
cles H1, H2, Extract and Signing at most qH1, qH2, qE, and qS-times, respectively.
Assume that ε0 ≥ (10(qS +1)(qS + qH1)qH2)/(`− 1), then the CDHP can be solved with
probability ≥ 1/9 and within running time ≤ (23qH1qH2T0)/

(
ε0

(
1− 1

`

))
where ` is a

security parameter.

Proof. Using the Lemma 1, we can reduce the forger F0 to F an adaptively chosen
message and given ID attack within time bound T ≤ T0 with the probability ε ≤
ε0(1− 1

` )/qH2 . We construct an algorithm C using F to solve the CDHP. We assume that
P , aP , and bP are given. Since the forger F is an adaptively chosen message attacker,
he can access to the hash oracles, the extraction oracle, and the signing oracle, and
ask at most qH1 , qH2 , qE , and qS queries for each oracles respectively. The algorithm
C simulates a real signer to get a valid signature from the forger F . If C does not fail
this simulation, he gets a valid signature, and using the oracle replaying technique he
can solve the CDHP.

We may assume the forger is well-behaved in the following sense: A forger F makes
a Extract query for an ID only if an H2 query has been made before for the ID. Also
Signing query is made for a message m only if a H1 queries has been made before for
the m.

Then the algorithm C puts Ppub = aP and performs the following game with the
forger F for a fixed identity ID as follows:

ID-Hash Query When F makes an ID-hash query IDi, C gives to F an answer
H2(IDi) = bP if IDi = ID and H2(IDi) = xiP for xi ∈R Z/` otherwise.

Extract Query When F makes an extract query for IDik , C gives xikPpub = xik(aP )
as the secret key corresponding to H2(IDik) for an identity IDik . Note that F must
not ask the secret key corresponding to the bP = H2(ID).

Message-Hash Query F makes qH message-hash queries. For the j-th hash query
Qj , C chooses a random value hj ∈ Z/` and gives to F as the hash value of Qj for
j = 1, · · · qH1 and stores them as H1(Qj) = hj .

Signing Query If F asks the signature on mjt of IDit , C chooses a random value
rt ∈ Z/` responses

Sign(IDit ,mjt) = (IDit ,mjt , Ut, ht, Vt),
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where Ut = rtP−htPpub and Vt = rt(xitP ) for t = 1, · · · , qS . Since (P, H2(IDit), Ut+
htPpub, Vt) is a valid Diffie-Hellman tuple, these signatures pass the verification
algorithm.

If the simulation does not fail, the forger F outputs a valid signature (ID,m, U, h, V )
with probability ε. After a replay of the forger F , apply the forking lemma in [PS00].
Then C obtains two valid signatures σ = (ID, m,U, h, V ) and σ′ = (ID,m, U, h′, V ′)
such that h 6= h′ with probability ≥ 1/9 within the time 23qH1T/ε. C can easily obtain
the value abP from

(hDID − h′DID)
h− h′

= DID = abP.

By the forking lemma [PS00] and the Lemma 1, we obtain the result of this theorem.
ut

3.3 Enhancing Signature Verification

We construct an efficient batch verification for k signatures. We denote by (ID,m, U, V )
a signature (U, V ) for a message m by a signer with an identity ID.

Aggregation Given k signatures (ID1,m1, U1, V1), . . . , (IDk,mk, Uk, Vk) compute V =∑k
i=1 Vi and output an aggregate signature

σ = (ID1, . . . , IDk,m1, . . . ,mk, U1, . . . , Uk, V ).

Aggregate Verification Given an aggregate signature σ as above, compute Qi =
H2(IDi) and hi = H1(mi, Ui) for all i = 1, · · · , k. The aggregate signature is ac-
cepted if and only if

e(P, V ) =
n∏

i=1

e (Qi, Ui + hiPpub) .

3.4 Security Proof of Aggregate Verification

Now we discuss the security of our aggregate verification. Boneh et al. suggested the
aggregate chosen key model [BGLS03] for the security of aggregate signatures, in which
a forger performs an existential forgery under an adaptively chosen-message attack in
the random oracle model. In this model, a forger is given a target public key for which a
forged signature should be made. While each secret key of users is chosen independently
in the traditional public key system, all secret keys of users are mutually related in ID-
based system. In fact, they are produced from one secret key of the whole system. Hence
in ID-based setting it is reasonable to give not an specific ID but a system parameter
to a forger. More precisely, a forger succeeds if he can produce a set of k signatures
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which pass the aggregate verification. We call this type of forger a k-aggregate forger
of a chosen ID. On the other hand, if a forger produces a set of k signatures one of
which has the signer with the given ID, then this type of forger is called a k-aggregate
forger of a given ID.

Lemma 2. If there is a k-aggregate forger F0 of a chosen ID under an adaptively cho-
sen message and ID attack to our scheme within time bound T0 with probability ε0, then
there is a k-aggregate forger F of a given ID under an adaptively chosen message and
ID attack within time bound T ≤ T0 with the probability ε ≤ ε0

(
1− k

`

) (
k

qH2
+k

)
, where

qH2 is the maximum number of queries to H2 asked by F0, ` is a security parameter
and k is the maximum number of signatures to be aggregated. In addition, the number
of queries to hash functions, Extract and Signing asked by F0 are the same as those
of F .

Proof. We assume, without loss of generality, a k-aggregate forger F0 has an extract
queries for any ID at most once. We consider an algorithm F that performs the following
simulation:

Setup F chooses a random number r ∈ {1, · · · , qH1}. Let IDi be the F0’s i-th H2-
query and ID′i = ID if i = r and ID′i = IDi otherwise. Let H ′

2(IDi) = H2(ID′
i),

Extract′(IDi)=Extract(ID′
i) and Signing′(IDi, mi)=Signing(ID′

i,mi)
Queries If F0 makes the H1, H2 hash queries and Extract, Signing queries, then F

computes H1, H ′
2, Extract′and Signing′ as above and answers the results.

If the simulation does not fail, F0 outputs a tuple (ID1
out, · · · , IDk

out,m1, · · · ,mk, σ)
where σ is the aggregation of the k signatures with probability ε0. Finally, if IDi

out = ID
for some i = 1, · · · , k and IDj

out 6= ID for all j 6= i and (ID1
out, · · · , IDi−1

out , ID, IDi+1
out , · · · ,

IDk
out,m1, · · · ,mk, σ) is a valid tuple, then F outputs (ID1

out, · · · , IDi−1
out , ID, IDi+1

out , · · · ,
IDk

out,m1, · · · ,mk, σ). Otherwise the simulation fails.
Since the output distributions of H ′

2, Extract′, Signing′-queries are not distin-
guishable those of original ones, we know

Pr[(ID1
out, · · · , IDk

out,m1, · · · ,mk, σ) is valid ] ≥ ε.

Since we consider the hash functions as the random oracles, we obtain the following
result.

Pr[IDj
out = IDi for some j = 1, · · · , k and i = 1, · · · qH2

| (ID1
out, · · · , IDk

out,m1, · · · ,mk, σ) is valid] ≥
(

1− 1
`

)k

≥ 1− k

`



8

Furthermore since the randomness of r, we have the following inequality.

Pr[IDi
out = IDr for some i = 1, · · · , k and IDj

out 6= ID for some j = 1, · · · , i− 1,

i + 1, · · · , k | IDj
out = IDi for some j = 1, · · · , k and i = 1, · · · qH2 ]

≥ qH2
−1Hk−1

qH2
Hk

≥ k(qH2 − 1)
(qh2 + k − 1)(qH2 + k − 2)

≥ k

2(qH2 + k)

Finally, summarizing these, we get the following result as desired

Pr[IDi
out = IDr = ID for some i = 1, · · · , k and IDj

out 6= ID for some

j = 1, · · · , i− 1, i + 1, · · · , k and (ID1
out, · · · , IDk

out,m1, · · · ,mk, σ)

is valid] ≥ ε ·
(

1− 1
`

)
· k

2(qH2 + k)
.ut

Now in the random oracle model we show that if there exists a k-aggregate forger
F of given ID under an adaptively chosen message and ID attack, then there exists an
algorithm C which can solve the CDHP. The forger F performs the following game:

Setup The k-aggregate forger F is given an ID0.
Queries F adaptively asks the hash values of his chosen IDs (including ID0), the secret

keys by his chosen ID.
Response F outputs a signature aggregation

σ = (ID1, . . . , IDk,m1, . . . ,mk, U1, . . . , Uk, V ),

which passes an aggregate verification. Here one of IDi should be equal to ID0 and
then mi has not been asked to the signature oracle for IDi.

Lemma 3. Let F be a k-aggregate forger which succeeds the above game within a time
bound T with probability ε in the random oracle model. We denote by qH1, qH2, qE, and
qS the maximum number of queries that F0 can ask to the oracles H1, H2, Extract,
and Signing oracles, respectively. If ε ≥ (10(qS + 1)(qS + qH1))/`, then the CDHP can
be solved with probability ≥ 1/9 and within running time ≤ (23qH1T )/ε.

Proof. We construct an algorithm C using the k-aggregate forger F to solve the CDHP.
We assume that P , aP , bP are given as the CDHP instances. The algorithm C simulates
a real signer to get a valid signature from F . If C does not fail this simulation, he gets a
valid signature and using the general oracle replaying technique, it can solve the CDHP.
In Setup, the algorithm C fixes a target identity ID0, and put Ppub = aP .
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Note that ID-Hash Query, Extract Query, Message-Hash Query, and Sign-
ing Query are the same as the single signature case. After the queries, if the simulation
does not fail, the forger F outputs a signature aggregation

σ = ({ID1, ID2, · · · , IDn}, {m1, · · · ,mn}, {U1, U2, · · · , Un}, {h1, · · · , hn}, V )

where n ≤ k and one of IDi is equal to ID0.
Now C replays the oracles and obtains another valid signature σ′

σ′ = ({ID′1, ID′2, · · · , ID′n′}, {m′
1, · · · ,m′

n′}, {U ′
1, U

′
2 · · · , U ′

n′}, {h′1, · · · , h′n′}, V ′)

where n′ ≤ k. By the forking lemma, the replay succeeds with the probability≥ 1/9 and
the running time ≤ (23qH2T )/ε. Note that we may assume h1 6= h′1 since the probability
of collision of two random numbers is negligible. Since F performs an attack for ID0,
both of σ and σ′ must contain a signature for the ID0. Further since the random
commitment r is fixed before the hash queries of a message, the corresponding random
commitment of σ must be the same with that of σ by the forking lemma. That is,
we have IDi = ID′j = ID0 and Ui = U ′

j for some i ∈ {1, · · · , n} and j ∈ {1, · · · , n′}.
Remark that according to the Extract Query, C knows the discrete log of the secret
keys except that of ID0. Hence from

V =
n∑

i=1

Vi =
n∑

i=1

(riQi + hiDi) =
n∑

i=1

{xi(riP ) + hiDi},

V ′ =
n′∑

i=1

V ′
i =

n′∑

i=1

{x′i(r′iP ) + h′iD
′
i},

we obtain two equations

α = r1Q1 + h1D1, β = r1Q1 + h′1D1.

Finally from the equation α− β = h1D1 − h′1D1, we obtain abP = D1 = (α− β)(h1 −
h′1)

−1P as desired. The total running time is bounded by the running time of the fork-
ing lemma. ut

¿From the Lemma 2 and Lemma 3, we obtain the following result.

Theorem 2 Let F0 be a k-aggregate forger for an existential forgery under an adap-
tively chosen message and ID attack to our scheme within a time bound T0 with
probability ε0. We denote by qH1, qH2, qE, and qS the maximum number of queries
that F0 can ask to the oracles H1, H2, Extract, and Signing oracles respectively. If
ε0 ≥ (10(qS + 1)(qS + qH1)(qH2 + k)qH2)/k(` − k), then the CDHP can be solved with
probability ≥ 1/9 and within running time ≤ (23qH1(qH2 + k)T0)/

(
ε0k

(
1− k

`

))
.
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3.5 What if we use other ID-based Signatures

We may consider other signature schemes based on the DLP for enhanced verifications.
In this subsection, however, we show that the batch verification is not secure for some
ID-based signature schemes (CC scheme [CC03], Hess scheme [Hess02], and Paterson
scheme [Pat02]) and Schnorr signature [Sch89].

First, we consider the CC scheme.

Setup, Extract, Signing Same as the original CC scheme.
Aggregation Given users’ identities ID1, · · · , IDk, compute Qi = H1(IDi) for all

i = 1, · · · , k. Given messages m1, · · · , mk (The messages needs not be distinct.),
signatures σi = (Ui, Vi) where Ui = riQi, Vi = (ri + hi)Di and hi = H1(mi, Ui),
compute V =

∑k
i=1 Vi and output σ = (U1, · · · , Uk, V ) as an aggregate signature.

Aggregate Verification Given an aggregate signature σ = (U1, · · · , Uk, V ) of mes-
sages m1, · · · ,mk for users’ identities ID1, · · · , IDk, compute Qi = H2(IDi) and
hi = H1(mi, Ui) for all i = 1, · · · , k. The aggregate signature is accepted if and only
if

e(P, V ) = e
(
Ppub,

∑k
i=1 Ui +

∑k
i=1 hiQi

)
.

We will show that the aggregate verification of the CC signatures is not secure:
We consider an aggregate forger which performs the following attack. Let ID1 be an
identity of a user U1 and ID2 an identity of an aggregate forger F . We may assume that
F has access to the ID-hash oracle, so gets the public keys Q1, Q2 corresponding to
ID1 and ID2 respectively. Now F selects two random values r1, r

′
2 and messages m1,m2,

compute U1 = r1Q1, h1 = H1(m1, U1) and

U2 = r′2Q2 − h1Q1 − r1Q1.

Finally, F computes h2 = H2(m2, U2) and V = (r′2 + h2)D2, and outputs a forged
aggregate signature

σ = (U1, U2, V ).

Though F does not know the discrete log r2 of U2, this forged aggregate signature
passes the verification algorithm:

e(Ppub, U1 + h1Q1 + U2 + h2Q2) = e(P, r1D1 + h1D1 + r′2D2 − h1D1 − r1D1 + h2D2)
= e(P, r′2D2 + h2D2)
= e(P, V ).

That is, the forged signature σ can be regarded as an aggregate signature on m1 and
m2.
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Remark 3 We may consider an aggregate verification of the Hess scheme. In the orig-
inal Hess scheme, we must compute a hash value and compare it with some value to
verify. But a hash function does not have any homomorphic property, thus we can-
not use directly the original Hess scheme for aggregate verification. Hence we slightly
modify the scheme to get an aggregation of two signatures: σ = (U1, U2, V )1 where
hi = H1(mi, Ui), Ui = e(P,Ri), V =

∑k
i=1 Vi and Vi = hiDi + Ri (i = 1, 2). Similarly

to the CC scheme, let U2 = e(Ppub,−h1Q1) · e(P, R′
2) = e(P,−h1D1 +R′

2) where a ran-
dom point R2 is the same role as U2 = r2QID in CC scheme, then the forged signature
σ passes the aggregate verification process:

e(P, V ) = e (Ppub, h1Q1 + h2Q2) · U.

Remark 4 For the Paterson signature, the original scheme is (R, S) where R = kP
and S = k−1(H2(M)P + H3(R)DID) according to [Pat02]. The verification is to check
the equality e(R, S) = e(P, P )H2(M) · e(Ppub, QID)H3(R). In this equation, R and S are
located the same side and the random value which is distinct for each user is multiplied
both P and DID, so it cannot be aggregated.

Remark 5 In the Schnorr signature case, similarly to CC scheme, we can construct a
forged aggregate signature σ = (r1, r2, s) where ri = gKi, s = s1 +s2, si = Ki +eixi and
ei = h(mi, ri) (i = 1, 2) following the notation in [PS00]. Verify gs = r1 · r2 · ye1

1 · ye2
2 .

But if we let r2 = r′2−x1e1, then the forged aggregate signature becomes (gK1 , gK2 , r1 +
r′2 + e2x2), which passes the aggregate verification process.

4 Efficiency

In this section, we discuss the efficiency of our scheme and its batch verification. Here
we assume that we use as a GDH group an elliptic curve with an admissible Tate
pairing. First, we note that our ID-based signature has the similar efficiency in signing
and a single verification with the previous ID-based signatures [Boyen03] as in Table 1.

Batch verification enhances efficiency of verification especially for signatures signed
by a single signer: Given k signatures (U1, V1), . . . , (Uk, Vk) for messages m1, · · · ,mk

issued by a signer with an identity ID, compute Q = H2(ID) and hi = H1(mi, Ui) for
all i = 1, · · · , k. The k signatures are accepted if and only if

e
(
P,

∑k
i=1 Vi

)
= e

(
Q,

(∑k
i=1 Ui

)
+

(∑k
i=1 hi

)
Ppub

)
.

It requires two pairing computations, one scalar multiplication, k elliptic curve addi-
tions, and k + 1 hashes. Since elliptic curve additions and hashes are far more efficient
1 Its individual signature (Ui, Vi) is verified as e(P, Vi) = e(PpubhiQi) · · ·Ui where i = 1, 2.
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Table 1. Comparison of Efficiency for ID-based Signatures

Schemes Pairing Point Mul on G Exp in V Hash

Paterson [Pat02] 0 4 0 1
Signing Hess [Hess02] 1 2 1 1

CC [CC03] 0 2 0 1
Ours 0 3 0 1

Paterson [Pat02] 2 0 2 1
Verification Hess [Hess02] 2 0 1 1

CC [CC03] 2 1 0 1
Ours 2 1 0 1

than pairing computations, we can say that the batch verification is almost constant
for the number of signatures by a single signer.

When a signature by a different signer is added to batch verification, one pairing and
one scalar multiplication are added. Since a pairing computation is almost ten times
slower than a scalar multiplication and the others are trivial [BKLS02], the additional
verification cost is almost a half of that of a single signature.

When we verify signatures, we need only
∑k

i=1 Vk rather than individual V ′
i , so

we can half signature sizes when using batch verification. Note that Ui’s cannot be
aggregated into one element since each of them is used as an input of a hash function.

5 Conclusion and Open problem

In this paper, we proposed a new ID-based signature scheme admitting secure and
efficient batch verification. When we add one signature by the same signer to batch
verification, the additional cost is only a hash plus one point addition in an elliptic
curve. One can, therefore, verify many signatures at the cost of almost one signature
verification. If a signature by a different signer is added, the additional cost is a half of
the single verification.

Aggregated Signature is a generalized version of Batch Signature, where many signa-
tures for different messages signed by different signers are aggregated into one signature
and verified by one equation. We may extend the notion of aggregate signatures to (ε, δ)
aggregate (or batch) signatures where ε and δ are compression ratio for signature size
and verification cost (i.e. Number of expensive cryptographic operations such as mod-
ular exponentiations or Bilinear maps). For example, the BGLS scheme is a (1/k, 1)
aggregate signature, and (1/k, 1/k) aggregate signature is optimal where k signatures
are aggregated. In this sense, our signature gives (1/2, 1/2) aggregate signature and
(1/2, 1/k + τ) batch signature for very small constant τ . It is an open problem to find
(1/k, 1/k) aggregate signatures or (1/k, 1/k) ID-based batch signatures.
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