37 research outputs found

    Cloning whole bacterial genomes in yeast

    Get PDF
    Most microbes have not been cultured, and many of those that are cultivatable are difficult, dangerous or expensive to propagate or are genetically intractable. Routine cloning of large genome fractions or whole genomes from these organisms would significantly enhance their discovery and genetic and functional characterization. Here we report the cloning of whole bacterial genomes in the yeast Saccharomyces cerevisiae as single-DNA molecules. We cloned the genomes of Mycoplasma genitalium (0.6 Mb), M. pneumoniae (0.8 Mb) and M. mycoides subspecies capri (1.1 Mb) as yeast circular centromeric plasmids. These genomes appear to be stably maintained in a host that has efficient, well-established methods for DNA manipulation

    A Combined Approach of High-Throughput Sequencing and Degradome Analysis Reveals Tissue Specific Expression of MicroRNAs and Their Targets in Cucumber

    Get PDF
    MicroRNAs (miRNAs) are endogenous small RNAs playing an important regulatory function in plant development and stress responses. Among them, some are evolutionally conserved in plant and others are only expressed in certain species, tissue or developmental stages. Cucumber is among the most important greenhouse species in the world, but only a limited number of miRNAs from cucumber have been identified and the experimental validation of the related miRNA targets is still lacking. In this study, two independent small RNA libraries from cucumber leaves and roots were constructed, respectively, and sequenced with the high-throughput Illumina Solexa system. Based on sequence similarity and hairpin structure prediction, a total of 29 known miRNA families and 2 novel miRNA families containing a total of 64 miRNA were identified. QRT-PCR analysis revealed that some of the cucumber miRNAs were preferentially expressed in certain tissues. With the recently developed ā€˜high throughput degradome sequencingā€™ approach, 21 target mRNAs of known miRNAs were identified for the first time in cucumber. These targets were associated with development, reactive oxygen species scavenging, signaling transduction and transcriptional regulation. Our study provides an overview of miRNA expression profile and interaction between miRNA and target, which will help further understanding of the important roles of miRNAs in cucumber plants

    Role Stressors in Sport: A Comparison of Role Stress and Job Satisfaction Among Sport Providers

    No full text
    Role stress occurs when individualsā€™ responsibilities are ambiguous or in conflict with their role expectations. Purpose: Using the theory of role dynamics (37), this study explored role stress and job satisfaction among sport providers (n = 195). The purpose of this study was to determine whether commonly education, training, and other variables impacted role stress, and whether role stress impacted job satisfaction among sport providers. Methods: The researchers used Bowling et al.ā€™s (10) role stressors scale to measure role stressors and Spectorā€™s (57) Job Satisfaction Survey to assess job satisfaction, along with demographic information, length of time in the role, level of education, and job training. Results/Conclusions: Findings indicated that education and job trainings were not significant predictors of role stress or job satisfaction, but other variables were found to be significant. Implications and recommendations for future studies are further discussed. Applications in Sport: These findings indicate that newer and younger coaches may require some support from sport managers. Additional applications discussed in the manuscript

    Differences in Metabolite Profiles of Dihydroberberine and Micellar Berberine in Caco-2 Cells and Humansā€”A Pilot Study

    No full text
    We investigated the pharmacokinetic pathway of berberine and its metabolites in vitro, in Caco-2 cells, and in human participants following the administration of dihydroberberine (DHB) and micellar berberine (LipoMicelĀ®, LMB) formulations. A pilot trial involving nine healthy volunteers was conducted over a 24 h period; blood samples were collected and subjected to Ultra High-Performance Liquid Chromatographyā€“High Resolution Mass Spectrometry (UHPLC-HRMS) analyses to quantify the concentrations of berberine and its metabolites. Pharmacokinetic correlations indicated that berberrubine and thalifendine follow distinct metabolic pathways. Additionally, jatrorrhizine sulfate appeared to undergo metabolism differently compared to the other sulfated metabolites. Moreover, berberrubine glucuronide likely has a unique metabolic pathway distinct from other glucuronides. The human trial revealed significantly higher blood concentrations of berberine metabolites in participants of the DHB treatment group compared to the LMB treatment groupā€”except for berberrubine glucuronide, which was only detected in the LMB treatment group. Similarly, results from in vitro investigations showed significant differences in berberine metabolite profiles between DHB and LMB. Dihydroberberine, dihydroxy-berberrubine/thalifendine and jatrorrhizine sulfate were detected in LMB-treated cells, but not in DHB-treated cells; thalifendine and jatrorrhizine-glucuronide were detected in DHB-treated cells only. While DHB treatment provided higher blood concentrations of berberine and most berberine metabolites, both in vitro (Caco-2 cells) and in vivo human studies showed that treatment with LMB resulted in a higher proportion of unmetabolized berberine compared to DHB. These findings suggest potential clinical implications that merit further investigation in future large-scale trials

    Morphological smoothing

    No full text

    A Comparison and Safety Evaluation of Micellar versus Standard Vitamin D<sub>3</sub> Oral Supplementation in a Randomized, Double-Blind Human Pilot Study

    No full text
    The aim of this pilot study was to evaluate and compare bioavailability and safety of two Vitamin D3 formulations (softgels) in healthy adults, at single daily doses of 1000 and 2500 IU, over a 60-day period. A total of 69 participants were initially screened for eligibility in a double-blind randomized study with a four-arm parallel design; 35 participants were randomized to treatment groups: (1) standard Vitamin D3 1000 IU (STD1000), (2) micellar Vitamin D3 1000 IU (LMD1000), (3) standard Vitamin D3 2500 IU (STD2500), and (4) micellar Vitamin D3 2500 IU (LMD2500). Serum Vitamin D concentrations were determined through calcifediol [25(OH)D] at baseline (=before treatment), at day 5, 10, and 15 (=during treatment), at day 30 (=end of treatment), and at day 45 and 60 (=during follow-up/post treatment). Safety markers and minerals were evaluated at baseline and at day 30 and day 60. The pharmacokinetic parameters with respect to iAUC were found to be significantly different between LMD1000 vs. STD1000: iAUC(5ā€“60): 992 Ā± 260 vs. 177 Ā± 140 nmol day/L; p 3 absorption of LMD when measured incrementally. During follow-up, participants in the LMD1000 treatment group showed approx. 7 times higher Vitamin D3 concentrations than the STD1000 group (iAUC(30ā€“60): 680 Ā± 190 vs. 104 Ā± 91 nmol day/L; p 2D concentrations or other biochemical safety markers were detected at day 60; no excess risks of hypercalcemia (i.e., total serum calcium > 2.63 mmol/L) or other adverse events were identified. LMD, a micellar delivery vehicle for microencapsulating Vitamin D3 (LipoMicelĀ®), proved to be safe and only showed superior bioavailability when compared to standard Vitamin D at the lower dose of 1000 IU. This study has clinical trial registration: NCT05209425
    corecore