552 research outputs found

    Self Consistent Expansion for the Molecular Beam Epitaxy Equation

    Full text link
    Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the non linear molecular beam epitaxy (MBE) equation, a self-consistent expansion (SCE) for the non linear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(rr,tt)=2D0rr2ρdδ(tt)D({\vec r - \vec r',t - t'}) = 2D_0 | {\vec r - \vec r'} |^{2\rho - d} \delta ({t - t'}). I find a lower critical dimension dc(ρ)=4+2ρd_c (\rho) = 4 + 2\rho , above, which the linear MBE solution appears. Below the lower critical dimension a r-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe non linear MBE, using a reliable method that proved itself in the past by predicting reasonable results for the Kardar-Parisi-Zhang (KPZ) system, where DRG failed to do so.Comment: 16 page

    Weighted Evolving Networks

    Full text link
    Many biological, ecological and economic systems are best described by weighted networks, as the nodes interact with each other with varying strength. However, most network models studied so far are binary, the link strength being either 0 or 1. In this paper we introduce and investigate the scaling properties of a class of models which assign weights to the links as the network evolves. The combined numerical and analytical approach indicates that asymptotically the total weight distribution converges to the scaling behavior of the connectivity distribution, but this convergence is hampered by strong logarithmic corrections.Comment: 5 pages, 3 figure

    Self-similar disk packings as model spatial scale-free networks

    Full text link
    The network of contacts in space-filling disk packings, such as the Apollonian packing, are examined. These networks provide an interesting example of spatial scale-free networks, where the topology reflects the broad distribution of disk areas. A wide variety of topological and spatial properties of these systems are characterized. Their potential as models for networks of connected minima on energy landscapes is discussed.Comment: 13 pages, 12 figures; some bugs fixed and further discussion of higher-dimensional packing

    Statistical mechanics of complex networks

    Get PDF
    Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the field of complex networks, focusing on the statistical mechanics of network topology and dynamics. After reviewing the empirical data that motivated the recent interest in networks, we discuss the main models and analytical tools, covering random graphs, small-world and scale-free networks, as well as the interplay between topology and the network's robustness against failures and attacks.Comment: 54 pages, submitted to Reviews of Modern Physic

    WormBase 2007

    Get PDF
    WormBase (www.wormbase.org) is the major publicly available database of information about Caenorhabditis elegans, an important system for basic biological and biomedical research. Derived from the initial ACeDB database of C. elegans genetic and sequence information, WormBase now includes the genomic, anatomical and functional information about C. elegans, other Caenorhabditis species and other nematodes. As such, it is a crucial resource not only for C. elegans biologists but the larger biomedical and bioinformatics communities. Coverage of core areas of C. elegans biology will allow the biomedical community to make full use of the results of intensive molecular genetic analysis and functional genomic studies of this organism. Improved search and display tools, wider cross-species comparisons and extended ontologies are some of the features that will help scientists extend their research and take advantage of other nematode species genome sequences

    Revisiting Date and Party Hubs: Novel Approaches to Role Assignment in Protein Interaction Networks

    Get PDF
    The idea of 'date' and 'party' hubs has been influential in the study of protein-protein interaction networks. Date hubs display low co-expression with their partners, whilst party hubs have high co-expression. It was proposed that party hubs are local coordinators whereas date hubs are global connectors. Here we show that the reported importance of date hubs to network connectivity can in fact be attributed to a tiny subset of them. Crucially, these few, extremely central, hubs do not display particularly low expression correlation, undermining the idea of a link between this quantity and hub function. The date/party distinction was originally motivated by an approximately bimodal distribution of hub co-expression; we show that this feature is not always robust to methodological changes. Additionally, topological properties of hubs do not in general correlate with co-expression. Thus, we suggest that a date/party dichotomy is not meaningful and it might be more useful to conceive of roles for protein-protein interactions rather than individual proteins. We find significant correlations between interaction centrality and the functional similarity of the interacting proteins.Comment: 27 pages, 5 main figures, 4 supplementary figure

    Measurements of the Υ(10860)\Upsilon(10860) and Υ(11020)\Upsilon(11020) resonances via σ(e+eΥ(nS)π+π)\sigma(e^+e^-\rightarrow\Upsilon(n{\rm S})\pi^+\pi^-)

    Full text link
    We report new measurements of the total cross sections for e+eΥ(nS)π+πe^+e^-\to \Upsilon(n{\rm S})\pi^+\pi^- (nn = 1, 2, 3) and e+ebbˉe^+e^-\to b\bar b from a high-luminosity fine scan of the region s=10.63\sqrt{s} = 10.63-11.0511.05 GeV with the Belle detector. We observe that the Υ(nS)π+π\Upsilon(n{\rm S})\pi^+\pi^- spectra have little or no non-resonant component and extract from them the masses and widths of Υ(10860)\Upsilon(10860) and Υ(11020)\Upsilon(11020) and their relative phase. We find M10860=(10891.1±3.21.7+0.6)M_{10860}=(10891.1\pm3.2^{+0.6}_{-1.7}) MeV/c2c^2 and \Gamma_{10860}=(53.7^{+7.1}_{-5.6}\,^{+1.3}_{-5.4}) MeV and report first measurements M_{11020}=(10987.5^{+6.4}_{-2.5}\,^{+9.0}_{-2.1}) MeV/c2c^2, \Gamma_{11020}=(61^{+9}_{-19}\,^{+2}_{-20}) MeV, and \phi_{\rm 11020}-\phi_{\rm 10860} = (-1.0\pm0.4\,^{+1.4}_{-0.1}) rad.Comment: University of Cincinnati preprint UCHEP-15-01, submitted to Physical Review D - Rapid Communication

    Study of e+e- => B(*) B(*)-bar pi+- at sqrt(s)=10.866 GeV

    Full text link
    We report the analysis of the three-body e+e- => B B-bar pi, B B*-bar pi, and B* B*-bar pi processes, including the first observation of the Zb+-(10610) =>[B B*-bar+c.c.]+- and Zb+-(10650) => [B*B*-bar]+- transitions. We measure visible cross sections for the three-body production of sigma_vis(e+e- => [B B*-bar+c.c.]+-pi-+=(11.2+-1.0(stat.)+-1.2(syst.)) pb and sigma_vis(e+e- => [B*B*-bar]+-pi-+)=(5.61+-0.73(stat.)+-0.66(syst.)) pb and set a 90% C.L. upper limit of sigma_vis(e+e- => [BB-bar]+-pi-+)<2.1 pb. The results are based on a 121.4 1/fb data sample collected with the Belle detector at a center-of-mass energy near the Y(5S) peak.Comment: 8 pages, 2 figure
    corecore