19,452 research outputs found

    Stabilizing the forming process in unipolar resistance switching using an improved compliance current limiter

    Full text link
    The high reset current IR in unipolar resistance switching now poses major obstacles to practical applications in memory devices. In particular, the first IR-value after the forming process is so high that the capacitors sometimes do not exhibit reliable unipolar resistance switching. We found that the compliance current Icomp is a critical parameter for reducing IR-values. We therefore introduced an improved, simple, easy to use Icomp-limiter that stabilizes the forming process by drastically decreasing current overflow, in order to precisely control the Icomp- and subsequent IR-values.Comment: 15 pages, 4 figure

    Studying Diquark Structure of Heavy Baryons in Relativistic Heavy Ion Collisions

    Full text link
    We propose the enhancement of Λc\Lambda_c yield in heavy ion collisions at RHIC and LHC as a novel signal for the existence of diquarks in the strongly coupled quark-gluon plasma produced in these collisions as well as in the Λc\Lambda_c. Assuming that stable bound diquarks can exist in the quark-gluon plasma, we argue that the yield of Λc\Lambda_c would be increased by two-body collisions between udud diquarks and cc quarks, in addition to normal three-body collisions among uu, dd and cc quarks. A quantitative study of this effect based on the coalescence model shows that including the contribution of diquarks to Λc\Lambda_c production indeed leads to a substantial enhancement of the Λc/D\Lambda_c/D ratio in heavy ion collisions.Comment: Prepared for Chiral Symmetry in Hadron and Nuclear Physics (Chiral07), Nov. 13-16, 2007, Osaka, Japa

    Highly stacked 3D organic integrated circuits with via-hole-less multilevel metal interconnects

    Get PDF
    Multilevel metal interconnects are crucial for the development of large-scale organic integrated circuits. In particular, three-dimensional integrated circuits require a large number of vertical interconnects between layers. Here, we present a novel multilevel metal interconnect scheme that involves solvent-free patterning of insulator layers to form an interconnecting area that ensures a reliable electrical connection between two metals in different layers. Using a highly reliable interconnect method, the highest stacked organic transistors to date, a three-dimensional organic integrated circuits consisting of 5 transistors and 20 metal layers, is successfully fabricated in a solvent-free manner. All transistors exhibit outstanding device characteristics, including a high on/off current ratio of similar to 10(7), no hysteresis behavior, and excellent device-to-device uniformity. We also demonstrate two vertically-stacked complementary inverter circuits that use transistors on 4 different floors. All circuits show superb inverter characteristics with a 100% output voltage swing and gain up to 35 V per V.11Ysciescopu

    Current Challenges in the Development of Quantum Dot Sensitized Solar Cells

    Get PDF
    This is the peer reviewed version of the following article: Current Challenges in the Development of Quantum Dot Sensitized Solar Cells, which has been published in final form at https://doi.org/10.1002/aenm.202001774. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.Quantum dot sensitized solar cells (QDSSCs) have experienced a continuous performance growth in the past years presenting a photoconversion efficiency > 13%. QDSSCs constitute a smart approach to take advantage of the properties of semiconductor quantum dots (QDs), mitigating the transport constrains. In contrast with other QD solar cell configurations, for QDSSCs, the record efficiencies have been reported with Pb and Cd‐free based sensitizers. The development of techniques in order to provide photoanodes with very high QD loading and the discovery of new electrolytes, including all solid configurations, are the most important future challenges that this technology must address to further increase cell performance and stability

    Erratum: Dirichlet Forms and Dirichlet Operators for Infinite Particle Systems: Essential Self-adjointness

    Full text link
    We reprove the essential self-adjointness of the Dirichlet operators of Dirchlet forms for infinite particle systems with superstable and sub-exponentially decreasing interactions.Comment: This is an erratum to the work appeared in J. Math. Phys. 39(12), 6509-6536 (1998

    The influence of position in overlap joints of Mg and Al alloys on microstructure and hardness of laser welds

    Get PDF
    Structure and properties of laser beam welding zone of dissimilar materials, AZ31 magnesium alloy and A5754 Aluminum alloy, are investigated. The microstructure and quality of the Mg/Al weld were studied by metallography, microhardness and optical microscopy. Differences in physical and mechanical properties of both materials, magnesium and aluminum, affect weldability and resistance of this combination, and lead to the formation of intermetallic compounds in the welded metal

    Combining Reinforcement Learning With Genetic Algorithm for Many-To-Many Route Optimization of Autonomous Vehicles

    Full text link
    This study introduces an approach for route optimization of many-to-many Demand-Responsive Transport (DRT) services. In contrast to conventional fixed-route transit systems, DRT provides dynamic, flexible, and cost-effective alternatives. We present an algorithm that integrates DRT with the autonomous shuttles at Korea National University of Transportation (KNUT), allowing dynamic route modifications in real-time to accommodate incoming service calls. The algorithm is designed to take into account the shuttle's current position, the destinations of passengers already on board, the current locations and destinations of individuals who have requested shuttle services, and the remaining capacity of the shuttle. The algorithm has been developed to combine genetic algorithms and reinforcement learning. The performance evaluation was conducted using a simulation model that emulates KNUT's campus and the adjoining local community area. The simulation results show significant improvements in two key metrics, specifically the 'Request to Pick-up Time' and 'Request to Drop-off Time' during high-demand periods over the single-shuttle operation. Additional simulation test with random service requests and stochastic passenger walking distances showed the potential adaptability across different settings

    Superconductivity and Lattice Instability in Compressed Lithium from Fermi Surface Hot Spots

    Full text link
    The highest superconducting temperature Tc_c observed in any elemental metal (Li with Tc_c ~ 20 K at pressure P ~ 40 GPa) is shown to arise from critical (formally divergent) electron-phonon coupling to the transverse T1_1 phonon branch along intersections of Kohn anomaly surfaces with the Fermi surface. First principles linear response calculations of the phonon spectrum and spectral function α2F(ω)\alpha^2 F(\omega) reveal (harmonic) instability already at 25 GPa. Our results imply that the fcc phase is anharmonically stabilized in the 25-38 GPa range.Comment: 4 pages, 3 embedded figure
    corecore