93 research outputs found

    Enhanced Safety Surveillance of Influenza Vaccines in General Practice, Winter 2015-16: Feasibility Study

    Get PDF
    BACKGROUND: The European Medicines Agency (EMA) requires vaccine manufacturers to conduct enhanced real-time surveillance of seasonal influenza vaccination. The EMA has specified a list of adverse events of interest to be monitored. The EMA sets out 3 different ways to conduct such surveillance: (1) active surveillance, (2) enhanced passive surveillance, or (3) electronic health record data mining (EHR-DM). English general practice (GP) is a suitable setting to implement enhanced passive surveillance and EHR-DM. OBJECTIVE: This study aimed to test the feasibility of conducting enhanced passive surveillance in GP using the yellow card scheme (adverse events of interest reporting cards) to determine if it has any advantages over EHR-DM alone. METHODS: A total of 9 GPs in England participated, of which 3 tested the feasibility of enhanced passive surveillance and the other 6 EHR-DM alone. The 3 that tested EPS provided patients with yellow (adverse events) cards for patients to report any adverse events. Data were extracted from all 9 GPs' EHRs between weeks 35 and 49 (08/24/2015 to 12/06/2015), the main period of influenza vaccination. We conducted weekly analysis and end-of-study analyses. RESULTS: Our GPs were largely distributed across England with a registered population of 81,040. In the week 49 report, 15,863/81,040 people (19.57% of the registered practice population) were vaccinated. In the EPS practices, staff managed to hand out the cards to 61.25% (4150/6776) of the vaccinees, and of these cards, 1.98% (82/4150) were returned to the GP offices. Adverse events of interests were reported by 113 /7223 people (1.56%) in the enhanced passive surveillance practices, compared with 322/8640 people (3.73%) in the EHR-DM practices. CONCLUSIONS: Overall, we demonstrated that GPs EHR-DM was an appropriate method of enhanced surveillance. However, the use of yellow cards, in enhanced passive surveillance practices, did not enhance the collection of adverse events of interests as demonstrated in this study. Their return rate was poor, data entry from them was not straightforward, and there were issues with data reconciliation. We concluded that customized cards prespecifying the EMA's adverse events of interests, combined with EHR-DM, were needed to maximize data collection. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1136/bmjopen-2016-015469

    CASNET2: Evaluation of an Electronic Safety Netting cancer toolkit for the primary care electronic health record: protocol for a pragmatic stepped-wedge RCT

    Get PDF
    Introduction: Safety-netting in primary care is the best practice in cancer diagnosis, ensuring that patients are followed up until symptoms are explained or have resolved. Currently, clinicians use haphazard manual solutions. The ubiquitous use of electronic health records provides an opportunity to standardise safety-netting practices. A new electronic safety-netting toolkit has been introduced to provide systematic ways to track and follow up patients. We will evaluate the effectiveness of this toolkit, which is embedded in a major primary care clinical system in England:Egerton Medical Information System(EMIS)-Web. Methods and analysis: We will conduct a stepped-wedge cluster RCT in 60 general practices within the RCGP Research and Surveillance Centre (RSC) network. Groups of 10 practices will be randomised into the active phase at 2-monthly intervals over 12 months. All practices will be activated for at least 2 months. The primary outcome is the primary care interval measured as days between the first recorded symptom of cancer (within the year prior to diagnosis) and the subsequent referral to secondary care. Other outcomes include referrals rates and rates of direct access cancer investigation. Analysis of the clustered stepped-wedge design will model associations using a fixed effect for intervention condition of the cluster at each time step, a fixed effect for time and other covariates, and then include a random effect for practice and for patient to account for correlation between observations from the same centre and from the same participant. Ethics and dissemination: Ethical approval has been obtained from the North West—Greater Manchester West National Health Service Research Ethics Committee (REC Reference 19/NW/0692). Results will be disseminated in peer-reviewed journals and conferences, and sent to participating practices. They will be published on the University of Oxford Nuffield Department of Primary Care and RCGP RSC websites

    Effectiveness of seasonal influenza vaccine in preventing laboratory-confirmed influenza in primary care in the United Kingdom : 2015/16 mid-season results

    Get PDF
    In 2015/16, the influenza season in the United Kingdom was dominated by influenza A(H1N1)pdm09 circulation. Virus characterisation indicated the emergence of genetic clusters, with the majority antigenically similar to the current influenza A(H1N1)pdm09 vaccine strain. Mid-season vaccine effectiveness (VE) estimates show an adjusted VE of 41.5% (95% confidence interval (CI): 3.0–64.7) against influenza-confirmed primary care consultations and of 49.1% (95% CI: 9.3–71.5) against influenza A(H1N1)pdm09. These estimates show levels of protection similar to the 2010/11 season, when this strain was first used in the seasonal vaccine

    Serological surveillance of influenza in an English sentinel network: pilot study protocol.

    Get PDF
    BACKGROUND: Rapidly undertaken age-stratified serology studies can produce valuable data about a new emerging infection including background population immunity and seroincidence during an influenza pandemic. Traditionally seroepidemiology studies have used surplus laboratory sera with little or no clinical information or have been expensive detailed population based studies. We propose collecting population based sera from the Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC), a sentinel network with extensive clinical data. AIM: To pilot a mechanism to undertake population based surveys that collect serological specimens and associated patient data to measure seropositivity and seroincidence due to seasonal influenza, and create a population based serology bank. METHODS AND ANALYSIS: Setting and Participants: We will recruit 6 RCGP RSC practices already taking nasopharyngeal virology swabs. Patients who attend a scheduled blood test will be consented to donate additional blood samples. Approximately 100-150 blood samples will be collected from each of the following age bands - 18- 29, 30- 39, 40- 49, 50- 59, 60- 69 and 70+ years. METHODS: We will send the samples to the Public Health England (PHE) Seroepidemiology Unit for processing and storage. These samples will be tested for influenza antibodies, using haemagglutination inhibition assays. Serology results will be pseudonymised, sent to the RCGP RSC and combined using existing processes at the RCGP RSC secure hub. The influenza seroprevalence results from the RCGP cohort will be compared against those from the annual PHE influenza residual serosurvey. ETHICS AND DISSEMINATION: Ethical approval was granted by the Proportionate Review Sub- Committee of the London - Camden & Kings Cross on 6 February 2018. This study received approval from Health Research Authority on 7 February 2018. On completion the results will be made available via peer-reviewed journals

    Incidence of Lower Respiratory Tract Infections and Atopic Conditions in Boys and Young Male Adults: Royal College of General Practitioners Research and Surveillance Centre Annual Report 2015-2016.

    Get PDF
    BACKGROUND: The Royal College of General Practitioners Research and Surveillance Centre comprises more than 150 general practices, with a combined population of more than 1.5 million, contributing to UK and European public health surveillance and research. OBJECTIVE: The aim of this paper was to report gender differences in the presentation of infectious and respiratory conditions in children and young adults. METHODS: Disease incidence data were used to test the hypothesis that boys up to puberty present more with lower respiratory tract infection (LRTI) and asthma. Incidence rates were reported for infectious conditions in children and young adults by gender. We controlled for ethnicity, deprivation, and consultation rates. We report odds ratios (OR) with 95% CI, P values, and probability of presenting. RESULTS: Boys presented more with LRTI, largely due to acute bronchitis. The OR of males consulting was greater across the youngest 3 age bands (OR 1.59, 95% CI 1.35-1.87; OR 1.13, 95% CI 1.05-1.21; OR 1.20, 95% CI 1.09-1.32). Allergic rhinitis and asthma had a higher OR of presenting in boys aged 5 to 14 years (OR 1.52, 95% CI 1.37-1.68; OR 1.31, 95% CI 1.17-1.48). Upper respiratory tract infection (URTI) and urinary tract infection (UTI) had lower odds of presenting in boys, especially those older than 15 years. The probability of presenting showed different patterns for LRTI, URTI, and atopic conditions. CONCLUSIONS: Boys younger than 15 years have greater odds of presenting with LRTI and atopic conditions, whereas girls may present more with URTI and UTI. These differences may provide insights into disease mechanisms and for health service planning

    Effectiveness of seasonal influenza vaccine in preventing laboratory-confirmed influenza in primary care in the United Kingdom : 2014/15 end of season results

    Get PDF
    The 2014/15 influenza season in the United Kingdom (UK) was characterised by circulation of predominantly antigenically and genetically drifted influenza A(H3N2) and B viruses. A universal paediatric influenza vaccination programme using a quadrivalent live attenuated influenza vaccine (LAIV) has recently been introduced in the UK. This study aims to measure the end-of-season influenza vaccine effectiveness (VE), including for LAIV, using the test negative case–control design. The overall adjusted VE against all influenza was 34.3% (95% confidence interval (CI) 17.8 to 47.5); for A(H3N2) 29.3% (95% CI: 8.6 to 45.3) and for B 46.3% (95% CI: 13.9 to 66.5). For those aged under 18 years, influenza A(H3N2) LAIV VE was 35% (95% CI: −29.9 to 67.5), whereas for influenza B the LAIV VE was 100% (95% CI:17.0 to 100.0). Although the VE against influenza A(H3N2) infection was low, there was still evidence of significant protection, together with moderate, significant protection against drifted circulating influenza B viruses. LAIV provided non-significant positive protection against influenza A, with significant protection against B. Further work to assess the population impact of the vaccine programme across the UK is underway

    Interim 2017/18 influenza seasonal vaccine effectiveness: Combined results from five European studies

    Get PDF
    Between September 2017 and February 2018, influenza A(H1N1)pdm09, A(H3N2) and B viruses (mainly B/Yamagata, not included in 2017/18 trivalent vaccines) co-circulated in Europe. Interim results from five European studies indicate that, in all age groups, 2017/18 influenza vaccine effectiveness was 25 to 52% against any influenza, 55 to 68% against influenza A(H1N1)pdm09, -42 to 7% against influenza A(H3N2) and 36 to 54% against influenza B. 2017/18 influenza vaccine should be promoted where influenza still circulates

    Publisher Correction: Stroke genetics informs drug discovery and risk prediction across ancestries (Nature, (2022), 611, 7934, (115-123), 10.1038/s41586-022-05165-3)

    Get PDF
    In the version of this article initially published, the name of the PRECISE4Q Consortium was misspelled as “PRECISEQ” and has now been amended in the HTML and PDF versions of the article. Further, data in the first column of Supplementary Table 55 were mistakenly shifted and have been corrected in the file accompanying the HTML version of the article
    • 

    corecore