237 research outputs found

    Joint-2D-SL0 Algorithm for Joint Sparse Matrix Reconstruction

    Get PDF
    Sparse matrix reconstruction has a wide application such as DOA estimation and STAP. However, its performance is usually restricted by the grid mismatch problem. In this paper, we revise the sparse matrix reconstruction model and propose the joint sparse matrix reconstruction model based on one-order Taylor expansion. And it can overcome the grid mismatch problem. Then, we put forward the Joint-2D-SL0 algorithm which can solve the joint sparse matrix reconstruction problem efficiently. Compared with the Kronecker compressive sensing method, our proposed method has a higher computational efficiency and acceptable reconstruction accuracy. Finally, simulation results validate the superiority of the proposed method

    Potential Passenger Flow Prediction: A Novel Study for Urban Transportation Development

    Full text link
    Recently, practical applications for passenger flow prediction have brought many benefits to urban transportation development. With the development of urbanization, a real-world demand from transportation managers is to construct a new metro station in one city area that never planned before. Authorities are interested in the picture of the future volume of commuters before constructing a new station, and estimate how would it affect other areas. In this paper, this specific problem is termed as potential passenger flow (PPF) prediction, which is a novel and important study connected with urban computing and intelligent transportation systems. For example, an accurate PPF predictor can provide invaluable knowledge to designers, such as the advice of station scales and influences on other areas, etc. To address this problem, we propose a multi-view localized correlation learning method. The core idea of our strategy is to learn the passenger flow correlations between the target areas and their localized areas with adaptive-weight. To improve the prediction accuracy, other domain knowledge is involved via a multi-view learning process. We conduct intensive experiments to evaluate the effectiveness of our method with real-world official transportation datasets. The results demonstrate that our method can achieve excellent performance compared with other available baselines. Besides, our method can provide an effective solution to the cold-start problem in the recommender system as well, which proved by its outperformed experimental results

    SQ-Swin: a Pretrained Siamese Quadratic Swin Transformer for Lettuce Browning Prediction

    Full text link
    Packaged fresh-cut lettuce is widely consumed as a major component of vegetable salad owing to its high nutrition, freshness, and convenience. However, enzymatic browning discoloration on lettuce cut edges significantly reduces product quality and shelf life. While there are many research and breeding efforts underway to minimize browning, the progress is hindered by the lack of a rapid and reliable methodology to evaluate browning. Current methods to identify and quantify browning are either too subjective, labor intensive, or inaccurate. In this paper, we report a deep learning model for lettuce browning prediction. To the best of our knowledge, it is the first-of-its-kind on deep learning for lettuce browning prediction using a pretrained Siamese Quadratic Swin (SQ-Swin) transformer with several highlights. First, our model includes quadratic features in the transformer model which is more powerful to incorporate real-world representations than the linear transformer. Second, a multi-scale training strategy is proposed to augment the data and explore more of the inherent self-similarity of the lettuce images. Third, the proposed model uses a siamese architecture which learns the inter-relations among the limited training samples. Fourth, the model is pretrained on the ImageNet and then trained with the reptile meta-learning algorithm to learn higher-order gradients than a regular one. Experiment results on the fresh-cut lettuce datasets show that the proposed SQ-Swin outperforms the traditional methods and other deep learning-based backbones

    3DAxiesPrompts: Unleashing the 3D Spatial Task Capabilities of GPT-4V

    Full text link
    In this work, we present a new visual prompting method called 3DAxiesPrompts (3DAP) to unleash the capabilities of GPT-4V in performing 3D spatial tasks. Our investigation reveals that while GPT-4V exhibits proficiency in discerning the position and interrelations of 2D entities through current visual prompting techniques, its abilities in handling 3D spatial tasks have yet to be explored. In our approach, we create a 3D coordinate system tailored to 3D imagery, complete with annotated scale information. By presenting images infused with the 3DAP visual prompt as inputs, we empower GPT-4V to ascertain the spatial positioning information of the given 3D target image with a high degree of precision. Through experiments, We identified three tasks that could be stably completed using the 3DAP method, namely, 2D to 3D Point Reconstruction, 2D to 3D point matching, and 3D Object Detection. We perform experiments on our proposed dataset 3DAP-Data, the results from these experiments validate the efficacy of 3DAP-enhanced GPT-4V inputs, marking a significant stride in 3D spatial task execution

    Private-Library-Oriented Code Generation with Large Language Models

    Full text link
    Large language models (LLMs), such as Codex and GPT-4, have recently showcased their remarkable code generation abilities, facilitating a significant boost in coding efficiency. This paper will delve into utilizing LLMs for code generation in private libraries, as they are widely employed in everyday programming. Despite their remarkable capabilities, generating such private APIs poses a formidable conundrum for LLMs, as they inherently lack exposure to these private libraries during pre-training. To address this challenge, we propose a novel framework that emulates the process of programmers writing private code. This framework comprises two modules: APIFinder first retrieves potentially useful APIs from API documentation; and APICoder then leverages these retrieved APIs to generate private code. Specifically, APIFinder employs vector retrieval techniques and allows user involvement in the retrieval process. For APICoder, it can directly utilize off-the-shelf code generation models. To further cultivate explicit proficiency in invoking APIs from prompts, we continuously pre-train a reinforced version of APICoder, named CodeGenAPI. Our goal is to train the above two modules on vast public libraries, enabling generalization to private ones. Meanwhile, we create four private library benchmarks, including TorchDataEval, TorchDataComplexEval, MonkeyEval, and BeatNumEval, and meticulously handcraft test cases for each benchmark to support comprehensive evaluations. Numerous experiments on the four benchmarks consistently affirm the effectiveness of our approach. Furthermore, deeper analysis is also conducted to glean additional insights

    A Novel STAP Algorithm for Airborne MIMO Radar Based on Temporally Correlated Multiple Sparse Bayesian Learning

    Get PDF
    In a heterogeneous environment, to efficiently suppress clutter with only one snapshot, a novel STAP algorithm for multiple-input multiple-output (MIMO) radar based on sparse representation, referred to as MIMOSR-STAP in this paper, is presented. By exploiting the waveform diversity of MIMO radar, each snapshot at the tested range cell can be transformed into multisnapshots for the phased array radar, which can estimate the high-resolution space-time spectrum by using multiple measurement vectors (MMV) technique. The proposed approach is effective in estimating the spectrum by utilizing Temporally Correlated Multiple Sparse Bayesian Learning (TMSBL). In the sequel, the clutter covariance matrix (CCM) and the corresponding adaptive weight vector can be efficiently obtained. MIMOSR-STAP enjoys high accuracy and robustness so that it can achieve better performance of output signal-to-clutter-plus-noise ratio (SCNR) and minimum detectable velocity (MDV) than the single measurement vector sparse representation methods in the literature. Thus, MIMOSR-STAP can deal with badly inhomogeneous clutter scenario more effectively, especially suitable for insufficient independent and identically distributed (IID) samples environment

    High-throughput Sequencing to Analyze Changes in the Structural Diversity of the Flora of Cheddar Cheese during Processing

    Get PDF
    In order to clarify the microflora structure in Cheddar cheese processing, MiSeq high-throughput sequencing technology was used to analyze the community structure of Cheddar cheese at three stages of processing (post-pasteurization, curdling, and ripening 0, 30, 60 and 90 d) in this study. The results showed that the community structure varies widely of cheddar cheese during processing. The highest microbial community diversity and abundance were found after pasteurization (Chao1 index and Shannon index mean values were 6.09 and 1415.78, respectively). The dominant microflora in the pasteurization stage at the genus level was Stenotrophomonas (21.04%). The community structure was relatively similar in the curd and ripening stages, Lactococcus were the dominant flora in both stages, with abundance averaging more than 85%. During the ripening period, the relative abundance of Lactococcus increased first and then decreased. The community structure in the pasteurized cheeses was different compared to the other groups, and there was less change in the community structure of the groups during the ripening period. This study provides a basis for clarifying the community structure of Cheddar cheese, and has a certain reference value for the expansion of Cheddar cheese microbiome information
    corecore