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In a heterogeneous environment, to efficiently suppress clutter with only one snapshot, a novel STAP algorithm for multiple-
input multiple-output (MIMO) radar based on sparse representation, referred to as MIMOSR-STAP in this paper, is presented.
By exploiting the waveform diversity of MIMO radar, each snapshot at the tested range cell can be transformed into multisnapshots
for the phased array radar, which can estimate the high-resolution space-time spectrum by using multiple measurement vectors
(MMV) technique. The proposed approach is effective in estimating the spectrum by utilizing Temporally Correlated Multiple
Sparse Bayesian Learning (TMSBL). In the sequel, the clutter covariance matrix (CCM) and the corresponding adaptive weight
vector can be efficiently obtained. MIMOSR-STAP enjoys high accuracy and robustness so that it can achieve better performance
of output signal-to-clutter-plus-noise ratio (SCNR) and minimum detectable velocity (MDV) than the single measurement vector
sparse representation methods in the literature. Thus, MIMOSR-STAP can deal with badly inhomogeneous clutter scenario more
effectively, especially suitable for insufficient independent and identically distributed (IID) samples environment.

1. Introduction

Space-time adaptive processing (STAP) is a crucial technique
which is used in airborne phased array radar to suppress clut-
ter for target detection [1]. However, the fully adaptive STAP
processor is difficult to be applied in practice, due to the lack
of sufficient independent and identically distributed (IID)
training samples in seriously nonhomogeneous environment.
Focused on nonhomogeneous clutter scenario, many strate-
gies have been proposed [2–8], that is, STAP algorithms
based on reduce-dimension (RD), reduce-rank (RR), direct
data domain (DDD), and space-time autoregressive filter-
ing (STAR). However, the abovementioned methods’ clutter
covariancematrix based onmaximum-likelihood estimation,
called traditional STAP methods, requires twice the degree
of freedom (DOF) of IID training samples if it is intended
to acquire less than 3 dB loss of optimal performance [9].
Ginolhac et al. [7, 8] proposed a new LR-STAP filter by
cleverly taking into account the persymmetric structure of
the noise covariance matrix (CM) and the low-rank (LR)

structure of the clutter. The resulting STAP filter is shown,
both theoretically and experimentally, to exhibit 3 dB SINR
loss performance with only 𝑟 secondary data (where 𝑟 is the
clutter rank).The IID training samples support can be further
reduced. Thus, it can be seen that reducing the number of
secondary data used to estimate the CM for STAP technique
is still an active research topic.

Inspired by the rapid development of sparse represen-
tation (SR) and compressed sensing (CS) theory, clutter
covariance matrix (CCM) can be estimated by utilizing SR
technique [10, 11] which needs much fewer training samples
compared with traditional STAP methods, and it is referred
to as SR-STAP in [10–12]. However, using the data of single
snapshot in SR-STAP [12] may lead to estimation errors,
such as clutter spectrum disconnection and “pseudopeaks.”
Hence, to prevent a potential sacrifice of sparse represen-
tation performance happening and make sufficient use of
the adjacent multiple snapshots, it would better transform
from the single measurement vector (SMV) sparse solution
problem into themultiplemeasurement vectors (MMV) joint
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sparse solution problem. The MMV problem caught many
scholars’ attention [11]. Moreover, to suppress the seriously
heterogeneous clutter, direct data domain (D3) method has
been proposed. In [13], owing to the intrinsic sparsity of
the spectral distribution, a new direct data domain approach
is examined, which seeks to estimate the high-resolution
spectrum by using focal underdetermined system solution
(FOCUSS) and L1 norm minimization. In [10], by exploiting
the space-time smoothing techniques, one snapshot of the
cell under test (CUT) generates multiple subsnapshots. And
then, the angle-Doppler profile is estimated by using the least
absolute shrinkage and selection operator (LASSO) solution.

However, there are two problems in view of the aforemen-
tioned facts. Firstly, the stationarity is hard to be guaranteed;
for example, short-range clutter environment in non-side-
looking airborne radar is seriously nonhomogeneous, which
results in clutter distribution varying with range and training
samples in different range cell unsatisfying IID. Conventional
SR-STAP cannot be used. Secondly, the accuracy of clutter
space-time spectrum estimation has a great impact on the
clutter suppression performance, and the calculation error
due to sparse recovery in noise background should be further
reduced. To resolve the above issues, a novel STAP algorithm
for airborne MIMO radar based on Temporally Correlated
Multiple Sparse Bayesian Learning is proposed, which can
effectively suppress clutter with only one snapshot. The
proposedmethodmaintains further accuracy and robustness
to noise so that it can achieve better performance of output
signal-to-clutter ratio (SCR) and minimum detectable veloc-
ity (MDV) than current single measurement vector sparse
representation.

The rest of the paper is organized as follows.The principle
of SR-STAP is briefly introduced and the signal model of
the problem is formulated in Section 2. In Section 3, mul-
tiple snapshot generation is studied. Then, the novel STAP
algorithm for airborne MIMO radar is proposed to mitigate
the strong ground clutter based on Temporally Correlated
Multiple Sparse Bayesian Learning (TMSBL). In Section 4,
simulation results are provided to assess the effectiveness of
the proposed method. Finally, conclusions are presented in
Section 5.

2. Principle of SR-STAP and
Problem Formulation

In airborne radar systems, ignoring the range ambiguity, a
general model of the space-time clutter plus noise can be
expressed as

x = x
𝑐
+ n =

𝑁
𝑐

∑

𝑖=1

𝜌
𝑖
k (𝑓
𝑑𝑖
, 𝑓
𝑠𝑖
) + n, (1)

where n is the Gaussian white noise vector,𝑁
𝑐
is the number

of independent clutter patches that are evenly distributed in
azimuth, and𝜌

𝑖
,𝑓
𝑠𝑖
, and𝑓

𝑑𝑖
are the complex-valued scattering

coefficient, spatial frequency, and Doppler frequency of the

𝑖th clutter patch, respectively. k(𝑓
𝑑𝑖
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) is the𝑁𝐾 × 1 space-

time steering vector, and it is given by
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(2)

The whole angle-Doppler plane is discretized into 𝑁
𝑠
× 𝑁
𝑑

grids, where 𝑁
𝑠
= 𝜂
𝑠
𝑁 and 𝑁

𝑑
= 𝜂
𝑑
𝑁 (𝜂
𝑠
and 𝜂

𝑑
denote

the resolution) are the number of angle and Doppler bins,
respectively. Afterwards, the received signal in (1) can be
rewritten as

x = Φ𝛾 + n, (3)

where Φ = [k(𝑓
𝑑1
, 𝑓
𝑠1
), . . . , k(𝑓

𝑑1
, 𝑓
𝑠𝑁
𝑠
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𝑑
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𝑠

)] ∈

C𝑁𝐾×𝑁𝑑𝑁𝑠 is the redundant space-time completed dictionary
and 𝛾 = [𝛾(1, 1), . . . , 𝛾(1,𝑁

𝑠
), . . . , 𝛾(𝑁

𝑑
, 𝑁
𝑠
)]
𝑇

∈ C𝑁𝑠𝑁𝑑×1 is
the angle-Doppler profile with nonzero elements represent-
ing the clutter.

According to [14–16], solving (3) for its sparse solution
can be transformed to 𝐿0 optimization problem as follows:

min 



𝛾



0
,

s.t. 



x −Φ𝛾

2
≤ 𝜀.

(4)

As to (4), it has been proven to be an NP-hard problem.
Fortunately, by 𝐿1 optimization, we could find the solution
of (4) with some characteristic of sparsity. There are a lot of
algorithms to solve this type of problem [17–19], such asOMP
algorithm [17], FOCUSS algorithm [18], and SBL algorithm
[19].

Based on the above discussion, the clutter covariance
matrix can be estimated by

RSR =

𝑁
𝑑

∑

𝑖=1

𝑁
𝑠

∑

𝑗=1
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) k𝐻 (𝑓

𝑑𝑖
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𝑠𝑗
) + 𝜎
2I, (5)

where 𝜎2 is the noise power and I denotes the identity matrix.
As the estimated clutter space-time spectrum 𝛾 is not stable
with only one snapshot, CCM estimation is inaccurate and
the clutter suppression performance degrades significantly.
To make sufficient use of the multiple snapshots and obtain
a better clutter suppression performance, multisnapshots are
employed in synergy, which is called sparse solution with
multiple measurement vectors [20–22] (MMV). As stated in
[11], selecting 𝐿 IID training range cells from both sides of the
cell under test, (3) can be rewritten by

X = ΦΥ + N, (6)

where X = [x
1
, x
2
, . . . , x

𝐿
] ∈ C𝑁𝐾×𝐿, Υ = [𝛾

1
, 𝛾
2
, . . . , 𝛾

𝐿
] ∈

C𝑁𝑠𝑁𝑑×𝐿, and N = [n
1
,n
2
, . . . ,n

𝐿
] ∈ C𝑁𝐾×𝐿. The estimated

clutter space-time spectrum can be obtained as Υ = ∑
𝐿

𝑙=1
𝛾
𝑙
/

𝐿. The clutter covariance matrix can be estimated by (5).
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Figure 1: Cell under test transformed into multisnapshots.

Finally, the weight vector of STAP processor can be
calculated by

wSR = R−1SRk (𝑓𝑑𝑡, 𝑓𝑠𝑡) , (7)

where k(𝑓
𝑑𝑡
, 𝑓
𝑠𝑡
) is the space-time steering vector of target.

The calculation error may be serious in the procedure of
sparse representation for STAP, because the single selected
snapshot contains random noise and clutter. Utilizing mul-
tiple IID snapshots improves the robustness of the method.
However, IID samples are difficult to acquire in seriously
nonhomogeneous clutter environment.

3. MIMOSR-STAP Method Based on TMSBL

MIMO radar has the superiority of waveform diversity and
increases the dimension of receiving data. A novel STAP
algorithm for airborne MIMO radar based on TMSBL is
presented in this section. The single snapshot of range cell
data in MIMO radar can be equivalent to multiple snapshots
data in conventional phased array radar. The procedure of
multiple snapshot generation is shown in Figure 1, and the
method is described in detail as follows.

3.1. Multiple Snapshot Generation. Without loss of generality,
we consider the side-looking MIMO radar with collocated
transmit and receive arrays. The transmit and receive arrays

are both uniform linear array with 𝑀 and 𝑁 elements,
respectively. 𝐾 pulses are transmitted during the coherent
processing interval. The transmitted waveforms are assumed
to be orthogonal. In the receive array, the received echoes are
downconverted, match-filtered, and stored. For each receive
antenna and pulse, the received signal can be decomposed
by 𝑀 matched filters, yielding 𝑀 isolated waveforms. After
match-filtering, the output of the 𝑚th transmit element, 𝑛th
receive element, and 𝑘th pulse is

𝑟
𝑚,𝑛,𝑘

= 𝜉 exp{
𝑗2𝜋 (𝑚 − 1) 𝑑

𝑇
sin 𝜃

𝜆

}

⋅ exp{
𝑗2𝜋 (𝑛 − 1) 𝑑

𝑅
sin 𝜃

𝜆

}

⋅ exp {𝑗2𝜋 (𝑘 − 1) 𝑓
𝑑
𝑇} ,

(8)

where 𝜉 is the amplitude of the received signal. 𝑓
𝑑

=

2[V
𝑎
cos𝜓 + V]/𝜆 is the Doppler frequency of the target

and V
𝑎
and V are the velocities of the platform and moving

target. 𝑇 is the pulse repetition interval (PRI). By exploiting
the waveform diversity of MIMO radar, the cell under test
can be transformed into multisnapshots for phased array
radar, which seeks to estimate the high-resolution space-time
spectrum with multiple measurement vectors.
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As shown in Figure 1, the received target data in transmit-
receive-time dimensions can be rearranged as
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,

Xtar = [xtar 1, xtar 2, . . . , xtar 𝑚, . . . , xtar 𝑀] ∈ C
𝑁𝐾×𝑀

,

xtar 𝑚 = [𝑟𝑚,1,1, 𝑟𝑚,2,1, . . . , 𝑟𝑚,𝑁,1, . . . , 𝑟𝑚,𝑁,𝐾]
𝑇

= 𝜉 exp{
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𝑇
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(9)

where ⊗ is the Kronecker product and S
𝑡
(V) ∈ C𝐾×1 and

Ssr(𝜃) ∈ C𝑁×1 are the Doppler steering vector and received
steering vectors, respectively, and they have the following
forms:

S
𝑡
(V) = [1, exp(𝑗4𝜋

V
𝑎
sin 𝜃 + V
𝜆𝑓𝑟
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𝜆𝑓𝑟
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𝑇

,

Ssr (𝜃) = [1, exp(
𝑗2𝜋𝑑
𝑅
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𝜆
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exp(
𝑗2𝜋 (𝑁 − 1) 𝑑
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𝜆
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𝑇

.

(10)

For airborne radar, the ground clutter echo corresponding to
a particular range bin results from coherent summation of
numerous statistically independent clutter patches over the
iso-range. The clutter is given by

Xclu = [xclu 1, xclu 2, . . . , xclu 𝑚, . . . , xclu 𝑀] ∈ C
𝑁𝐾×𝑀

,

xclu 𝑚

=

𝑁
𝑐
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𝑑𝑖
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𝑠𝑖
) ,

(11)

where 𝜉
𝑖
denotes complex-valued scattering coefficient of the

𝑖th clutter patch and𝑁
𝑐
is the number of independent clutter

sources that are evenly distributed in azimuth.

Consequently, the space-time snapshot of the cell under
test can be expressed as𝑁𝐾 ×𝑀 dimensional matrix:

X = [x
1
, x
2
, . . . , x

𝑚
, . . . , x

𝑀
] = Xtar + Xclu + X

𝑛

∈ C
𝑁𝐾×𝑀

,

x
𝑚
= xtar 𝑚 + xclu 𝑚 + n

𝑚

=

𝑁
𝑐

∑

𝑖=1

𝜎
𝑖,𝑚
k (𝑓
𝑑𝑖
, 𝑓
𝑠𝑖
) + 𝜎
𝑡,𝑚

k (𝑓
𝑑𝑡
, 𝑓
𝑠𝑡
) + n
𝑚
,

(12)

where 𝜎
𝑡,𝑚

= 𝜉 exp{𝑗2𝜋𝛼(𝑚 − 1)𝑑
𝑅
sin 𝜃/𝜆} and 𝜎

𝑖,𝑚
= 𝜉
𝑖

exp{𝑗2𝜋𝛼(𝑚 − 1)𝑑
𝑅
sin 𝜃
𝑖
/𝜆} are the amplitudes of the target

and the 𝑖th clutter patch corresponding to the 𝑚th transmit
waveform. 𝜉 denotes the scattering coefficient of the target
and 𝜉
𝑖
denotes the scattering coefficient of the 𝑖th patch.

As stated in (3), the received data of the 𝑚th transmit
waveform at CUT can be expressed as

x
𝑚
=

𝑁
𝑠

∑

𝑖=1

𝑁
𝑑

∑

𝑗=1

𝛾
𝑚
(𝑖, 𝑗) V (𝑓

𝑑𝑖
, 𝑓
𝑠𝑗
) + n
𝑚
= Φ𝛾
𝑚
+ n
𝑚
, (13)

where 𝛾
𝑚
is the target and clutter space-time spectrum of the

𝑚th transmit waveform at CUT.
As𝑀 transmit waveforms have similar clutter structure,

multisnapshots can be employed; that is,

X = ΦΥ + N, (14)

where X = [x
1
, x
2
, . . . , x

𝑀
] ∈ C𝑁𝐾×𝑀, Υ = [𝛾

1
, 𝛾
2
, . . . , 𝛾

𝑀
] ∈

C𝑁𝑠𝑁𝑑×𝑀, and N = [n
1
,n
2
, . . . ,n

𝑀
] ∈ C𝑁𝐾×𝑀.

3.2. STAP via TMSBL Algorithm. By employing the guide-
lines of the BCS approach in [23] for dealing with complex
data, (14) can be rewritten as

[

Re (X)
Im (X)

] = [

Re (Φ) − Im (Φ)

Im (Φ) Re (Φ)
] [

Re (Υ)
Im (Υ)

]

+ [

Re (N)
Im (N)

] .

(15)

Re( ) and Im( ) are the operations that extract the real part
and imaginary part from the complex number, respectively.
Denote

X̂ = [Re (X) Im (X)]𝑇 ,

Φ̂ = [

Re (Φ) −Im (Φ)

Im (Φ) Re (Φ)
] ,

(16)

Υ̂ = [Re (Υ) Im (Υ)]
𝑇

,

̂N = [Re (N) Im (N)]𝑇 .
(17)

And (15) can be rewritten as

X̂ = Φ̂Υ̂ + N̂. (18)
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Assume that the 𝑛th row of Υ̂ is mutually independent and
each has a Gaussian distribution, given by

𝑝 (�̂�
𝑛⋅
; 𝜌
𝑛
,B
𝑛
) ∼ 𝑁 (0, 𝜌

𝑛
B
𝑛
) , 𝑛 = 1, . . . , 2𝑁

𝑠
𝑁
𝑑
, (19)

where 𝜌
𝑛
is an unknown variance parameter controlling the

row sparsity in Υ̂ and B
𝑛
is a positive definite matrix that

captures the temporal correlation of �̂�
𝑛
. We reexpress (18) in

vector form:

y = Ψx + k, (20)

where y = vec(̂X𝑇) ∈ C2𝑁𝑠𝑁𝑑𝑀×1,Ψ = Φ̂⊗ I
𝑀
, x = vec(Υ̂𝑇) ∈

C2𝑁𝑠𝑁𝑑𝑀×1, and k = vec(̂N𝑇) ∈ C2𝑁𝑠𝑁𝑑𝑀×1. Suppose that the
noise units in vector k are independent and each one is Gaus-
sian with noise variance 𝜆. Then, the Gaussian likelihood of
(20) is given by

𝑝 (y | x, 𝜆) ∼ 𝑁y|x (Ψx, 𝜆I) . (21)

The prior distribution x of joint sparsity can be repre-
sented in vector form as follows:

𝑝 (x; 𝜌
𝑛
,B
𝑛
) ∼ 𝑁x (0, Γ ⊗ B) , (22)

where Γ = diag(𝜌
1
, . . . , 𝜌

2𝑁
𝑠
𝑁
𝑑

) and B = diag(B
1
, . . . ,B

2𝑁
𝑠
𝑁
𝑑

).
By combining the likelihood and the prior for 𝑥 above, we can
get the posterior density of x which is also Gaussian:

𝑝 (x | y; 𝜆, 𝜌
𝑛
,B
𝑛
) ∼ 𝑁x (𝜇x,Σx) , (23)

where

𝜇x =
ΣxΨ
𝑇y

𝜆

, (24)

Σx = [(Γ ⊗ B)−1 + Ψ
𝑇

Ψ

𝜆

]

−1

. (25)

Using definition (25), the maximum a posteriori (MAP)
estimate of x is given by

x∗ ≜ 𝜇x = [𝜆 (Γ ⊗ B)−1 +Ψ𝑇Ψ]
−1

Ψ
𝑇y

= (Γ ⊗ B)Ψ𝑇 [𝜆I +Ψ (Γ ⊗ B)Ψ𝑇]
−1

y,
(26)

where the last equation follows the matrix identity (I +
AB)−1A = A(I + BA)−1. With a reasonable approximation
[𝜆I + Ψ(Γ ⊗ B)Ψ𝑇]−1 ≈ (𝜆I + Φ̂ΓΦ̂𝑇)−1 ⊗ B−1 [20] and Ψ =
Φ̂ ⊗ I
𝑀
, (26) can be derived as

x∗ ≜ 𝜇x

≈ (Γ ⊗ B) (Φ̂ ⊗ I
𝑀
)

𝑇

[(𝜆I + Φ̂ΓΦ̂𝑇)
−1

⊗ B−1] y

= [ΓΦ̂
𝑇

(𝜆I + Φ̂ΓΦ̂𝑇)
−1

⊗ I] y.

(27)

Equation (27) can be rewritten in a matrix form as follows:

Υ̂ = ΓΦ̂
𝑇

(𝜆I + Φ̂ΓΦ̂𝑇)
−1

̂X. (28)

With the same approximation as above, (25) can be derived
as follows:

Σx = [(Γ ⊗ B)−1 + Ψ
𝑇

Ψ

𝜆

]

−1

= (Γ ⊗ B) − (Γ ⊗ B)

⋅ (Ψ
𝑇

⊗ I) (𝜆I +Ψ (Γ ⊗ B)Ψ𝑇)
−1

(Ψ ⊗ I) (Γ ⊗ B)

≈ (Γ ⊗ B) − ((ΓΦ̂𝑇) ⊗ B)

⋅ [(𝜆I + Φ̂ΓΦ̂𝑇)
−1

⊗ B−1] ⋅ ((Φ̂Γ) ⊗ B)

= (Γ − ΓΦ̂
𝑇

(𝜆I + Φ̂ΓΦ̂𝑇)
−1

Φ̂Γ) ⊗ B

= (Γ
−1

+

Φ̂
𝑇

Φ̂

𝜆

)

−1

⊗ B = Ξ
𝑥
⊗ B,

(29)

where

Ξ
𝑥
= (Γ
−1

+

Φ̂
𝑇

Φ̂

𝜆

)

−1

. (30)

Hyperparameters 𝜆, Γ, and B can be estimated with Type II
maximum likelihood which is marginalized over the weights
and then performs the maximum-likelihood estimation. For
convenience, we list the estimated results derived in [20] as

𝜌
𝑛
=

1

𝑀

(
̂X𝑇
𝑛⋅
B−1̂X
𝑛⋅
+ (Ξ
𝑥
)
𝑛𝑛
) ,

𝜆 =







̂Y − Φ̂̂X


2

𝐹

2𝑁
𝑠
𝑁
𝑑
𝑀

+

𝜆 tr [Φ̂ΓΦ̂𝑇 (𝜆I + Φ̂ΓΦ̂𝑇)
−1

]

2𝑁
𝑠
𝑁
𝑑

,

B =

̃B






̃B
𝐹

, where B̃ =

2𝑁
𝑠
𝑁
𝑑

∑

𝑛=1

̂X𝑇
𝑛⋅

̂X
𝑛⋅

𝜌
𝑛

.

(31)

An iterative procedure is produced by the learning rules
(28), (29), and (31), with which all hyperparameters can be
estimated and the maximum a posteriori (MAP) estimate of
�̂� can be obtained too. And then, 𝛾 = [𝛾

1
, 𝛾
2
, . . . , 𝛾

𝑀
] ∈

C𝑁𝑠𝑁𝑑×𝑀 can be derived based on formula (17). Finally, the
expected high-resolution space-time spectrum of target and
clutter can be estimated by the algorithm mentioned above;
the clutter distribution can be extracted using the assumed
signal of interest (SOI), which follows a similar idea of D3
STAPmethod.Then, the CCM and the corresponding weight
vector can be calculated by

RSR =

𝑁
𝑑

∑

𝑝=1

𝑁
𝑠

∑

𝑞=1





𝛾 (𝑝, 𝑞)






2

𝜙 (𝑓
𝑑𝑝
, 𝑓
𝑠𝑞
)𝜙
𝐻

(𝑓
𝑑𝑝
, 𝑓
𝑠𝑞
)

+ 𝜎
2I
𝑁𝐾
, (𝑝, 𝑞) ∉ Ω (𝑓

𝑠𝑡
, 𝑓
𝑑𝑡
) ,

(32)

wSR = R−1SR𝜙 (𝑓𝑑𝑡, 𝑓𝑠𝑡) , (33)
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where 𝛾 = (1/𝑀)∑
𝑀

𝑖=1
𝛾
𝑖
is the averaged value of all the

columns and
Ω (𝑓
𝑠𝑡
, 𝑓
𝑑𝑡
)

= {(𝑝, 𝑞) |






𝑓
𝑑𝑝
− 𝑓
𝑑𝑡






≤ 𝛿
𝑑
,






𝑓
𝑠𝑞
− 𝑓
𝑠𝑡






≤ 𝛿
𝑠
}

(34)

is the possible Doppler and spatial frequency domain includ-
ing the assumed signal of interest (SOI), which can be deter-
mined by the rough a priori information for the target. The
constants 𝛿

𝑑
= 𝜇
𝑑
Δ
𝑑
and 𝛿

𝑠
= 𝜇
𝑠
Δ
𝑠
reflect the tolerance to

the uncertainty of the target normalized Doppler frequency
and spatial frequency, where Δ

𝑑
and Δ

𝑠
are the discretizing

resolutions determined by 𝑁
𝑠
and 𝑁

𝑑
, respectively. 𝜇

𝑑
and

𝜇
𝑠
are appropriate tolerance constants aiming to avoid target

self-canceller.
In conclusion, themain procedure can be done as follows.

Step 1. By employing the guidelines of the BCS approach for
dealing with complex data, the matrix ̂X can be acquired and
then vectorized as vector y; according to (16) andΨ = Φ̂⊗I

𝑀
,

we can transform the MMVmodel to the block SMVmodel.

Step 2. Initialize the parameter B = I and solution vector x.

Step 3. An iterative procedure is produced by learning rules
(28), (29), and (31), resulting in updating the parameters 𝜌

𝑛
,

B, and 𝜆.

Step 4. By (27) and (29), the mean value 𝜇x (the maximum
a posteriori (MAP) estimate of x) and variance Σx can be
computed.

Step 5. Theprocedure endswhen the iterations reach themax
times or the threshold of two adjoint iterations reaches some
certain value. If not, go on with Steps 3 and 4.

Step 6. Output the value 𝛾 = [𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑀
] ∈ C𝑁𝑠𝑁𝑑×𝑀,

estimate the parameter 𝛾 using the secondary measurements
via 𝛾 = (1/𝑀)∑

𝑀

𝑖=1
𝛾
𝑖
, and compute the clutter covariance

matrix as (32).

Step 7. Design the STAP filter weights according to (33) and
calculate the filter output y = w𝐻SRx, where x is the received
signal in the CUT. The target detection can be followed by
binary hypothesis testing to determine the target presence

(H
1
) or absence (H

0
), given by y

H
1

>

<

H
0

𝜀, where 𝜀 is the threshold

scalar.

4. Experimental Results and
Performance Analysis

In this section, simulations are conducted to demonstrate
the effectiveness of the proposed method. The proposed
simulated scenarios have the following parameters: 𝑁 =

𝑀 = 10, 𝑑
𝑅
= 𝑑
𝑇
= 0.115m, pulse number 𝐾 = 10,

radar wavelength 𝜆 = 0.23m, PRF 𝑓
𝑟
= 2434.8, platform

velocity V
𝑝
= 140m/s, platform height 𝐻 = 6000m, target

velocity V
𝑟
= 28m/s, target range 42 km, target azimuth 90∘,

clutter-to-noise ratio (CNR) 60 dB, and signal-to-noise ratio
(SNR) 15 dB. The number of discretizing grids for the spatial
frequency equals 50; that is,𝑁

𝑠
= 𝑁
𝑑
= 50.

4.1. Spectrum Estimation Performance. The accuracy of clut-
ter space-time spectrum estimation has a great impact on the
ultimate clutter suppression performance. In this subsection,
the spectrum estimation of the clutter and target with the
methods below is examined. For FOCUSS algorithm, the
stopping condition is decided by the criterion times, which
is set to be 250. According to [9, 15], sparsity of clutter is
𝑁+𝐾−1 = 19. As the spectrum including target, the sparsity
corresponding to the criterion times is at least 20 for OMP
algorithm.

Figure 2 shows the space-time spectrum estimated by SR-
STAP algorithm and MIMOSR-STAP algorithm with only
one snapshot. Figures 2(a) and 2(b) are obtained exploiting
FOCUSS class algorithms [18, 21]. Figures 2(c) and 2(d) are
obtained exploiting OMP class algorithms [17, 22]. Figures
2(e) and 2(f) are obtained exploiting SBL class algorithms
[20, 23]. The results show that MIMOSR-STAP obtains more
accurate clutter spectrum than SR-STAP, that is to say,
different from the phased array radar; MIMOSR-STAP can
be utilized to implement the joint sparse recovery of clutter
spectrum in multiple snapshots of single range cell case. Fig-
ures 2(b), 2(d), and 2(f) show that our proposed method can
obtain a clearer clutter spectrum with much less estimation
error existing, such as clutter spectrum disconnection and
“pseudopeaks.” And that means our method can improve the
accuracy of CCM estimation.

4.2. Performance Improvement. In this subsection, the
improvement factor (IF) performance of the abovementioned
methods is examined. Moreover, traditional methods such
as STAP based on sample matrix inverse (SMI) algorithm
and direct data domain (D3) algorithm are chosen to be
the reference with comparing the standards. The training
samples requirement of SMI-STAP algorithm is 200
(2NK). The subarray numbers of channel and pulse of
D3 STAP algorithm are 4. The signal-to-clutter-plus-noise
ratio (SCNR) is commonly used to assess the detection
performance of airborne radar systems. Improvement factor
(IF) is defined as the ratio of output SCNR to input SCNR:

IF =
SCNRout
SCNRin

=

𝜔
HSSH𝜔/𝜔H (RC + RN)𝜔

SHS/tr (RC + RN)

=

𝜔
HSSH𝜔 ⋅ tr (RC + RN)

𝜔HSSH𝜔SHS
,

(35)

where tr(⋅) is matrix trace.
Figures 3(a) and 3(b) compare the IF performance of

the proposed method using TMSBL [20] algorithm with
MIMOSR-STAP using MFOCUSS [21], MOMP [22], SR-
STAP using FOCUSS [18], OMP [17], SBL [23], SMI-STAP
[24], and D3-STAP [24]. The IF performance of the SMI-
STAP method is used as a theoretically optimal result,
owing to which CCM estimation meets 2NK IID samples
in simulated scenario. The D3-STAP does not require the
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(f) MIMOSR-STAP based on TMSBL

Figure 2: Spectrum estimation performance.
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Figure 3: Improvement factor.

training data at the cost of reduced subaperture. The per-
formance of D3-STAP declines because its system DOF
decreases. Consistent with Figure 2, the proposed method
outperforms othermethods significantly and its performance
is extremely close to the optimal method. Obviously, our
proposed method can estimate the high-resolution space-
time spectrum with one snapshot. Therefore, the proposed
method’s clutter covariance matrix (CCM) estimation is
effective and results in good clutter suppression performance.

5. Conclusions

In this paper, a novel STAP algorithm for airborne MIMO
radar based on Temporally Correlated Multiple Sparse
Bayesian Learning (TMSBL) to mitigate heterogeneous clut-
ter is studied. By exploiting the waveform diversity of MIMO
radar, the cell under test can be transformed into multisnap-
shots for phased array radar, which seeks to estimate the high-
resolution space-time spectrum with multiple measurement
vectors. As a result, the proposed method suppresses clut-
ter effectively. Compared with algorithms based on single
measurement vector, MFOCUSS and MOMP, the proposed
method could achieve better performance with only one
snapshot, especially suitable for the seriously heterogeneous
clutter environment which is difficult for catching indepen-
dent and identically distributed (IID) training samples.
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