
Research Article
Joint-2D-SL0 Algorithm for Joint Sparse Matrix Reconstruction

Dong Zhang, Yongshun Zhang, and Cunqian Feng

Air and Missile Defense College, Air Force Engineering University, Xi’an, Shaanxi 710051, China

Correspondence should be addressed to Dong Zhang; zhangdongtougao@163.com

Received 19 July 2017; Revised 4 November 2017; Accepted 26 November 2017; Published 20 December 2017

Academic Editor: Elisa Giusti

Copyright © 2017 Dong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sparse matrix reconstruction has a wide application such as DOA estimation and STAP. However, its performance is usually
restricted by the grid mismatch problem. In this paper, we revise the sparse matrix reconstruction model and propose the joint
sparse matrix reconstruction model based on one-order Taylor expansion. And it can overcome the grid mismatch problem.
Then, we put forward the Joint-2D-SL0 algorithm which can solve the joint sparse matrix reconstruction problem efficiently.
Compared with the Kronecker compressive sensing method, our proposed method has a higher computational efficiency and
acceptable reconstruction accuracy. Finally, simulation results validate the superiority of the proposed method.

1. Introduction

Compressive sensing is becoming more and more popular
for its superiority in parameter super-resolution estimation
using short observation [1–3]. And as extensions to com-
pressed sensing, sparse matrix reconstruction has received a
lot of attention [4–6]. Many problems in signal processing
can be seemed as sparse matrix reconstruction problem, such
as the DOA estimation [7] and STAP [8]. In this paper, we
consider the estimation of DOA and DOD in MIMO radar.
It can be solved by the traditional subspace method, such as
MUSIC and ESPRIT algorithm. But they usually need large
snapshots to estimate the covariance matrix. Considering
the advantages of sparse matrix reconstruction, here, we
research the estimation of DOA and DOD in MIMO radar
based on sparse matrix reconstruction method. And
many algorithms have been proposed to solve the sparse
matrix reconstruction efficiently. For instance, [9] puts
forward the 2D-SL0 algorithm, and [10] puts forward the
2D-IAA algorithm. Both of them can reconstruct the
sparse matrix efficiently. However, the sparse matrix
model has some inherent shortcomings. Its performance
is affected by the grid mismatch problem [11]. That is
because no matter how thin we divide the mesh, we still
cannot guarantee that all the parameters fall on the grid
completely [12, 13]. So the estimation accuracy will be

affected by the grid number and how much do we divide
the mesh.

In this paper, we revise the sparse matrix model by the
one-order Taylor expansion and propose the joint sparse
matrix model. This model eliminates the grid mismatch
effect by introducing some joint sparse items. Then, in order
to solve the joint sparse matrix reconstruction problem effi-
ciently, we revise the 2D-SL0 algorithm and put forward
the Joint-2D-SL0 algorithm. It can get a high estimation
accuracy with satisfied speed.

Note that our method is different with the methods in
[9, 10]. The methods in [9, 10] cannot deal with the off-grid
problem. Our method can solve it by introducing some joint
sparse items. And these sparse items have the same sparse
structure. So the “Joint” means that our Joint-2D-SL0 algo-
rithm can get their estimation simultaneously. However, the
“Joint” in [14] means that it is jointly used to reconstruct
the images at all available channels simultaneously. That is
the difference between our method and the method in [14].
Both our method and the method in [14] are applied to the
signal matrix without stacking the signal into 1D vector.

2. Problem Formulation

Assuming there is a bistatic MIMO radar which obtains K
transmitters and L receivers, both the transmitting array
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and the receiving array are collocated in uniform linear
array. d1 and d2 are the element spacing of transmitters
and receivers, respectively. f T = d1cos φ /λ and f R = d2
cos θ /λ are the normalized DOD and normalized DOA
of targets. For convenience, we denote them as the DOD
and DOA in our paper. Assuming the transmitting wave-
forms are normalized orthogonal signals, that is, SSH = IK ,
where S = s1, s2,… , sK

T . After matched filtering, we get
the received signal as follows:

Y = 〠
M

m=1
amaR f R

m aT f T
m

T
S +W SH

= 〠
M

m=1
amaR f R

m aT f T
m

T
+ Z,

1

where am is the scattering coefficient of mth target. W
represents the noise matrix. Z =WSH . aR f R

m = 1,… ,
exp j L − 1 2πf R

m and aT f T
m = 1,… , exp j K − 1 2π

f T
m are the receiving steering vectors and transmitting
steering vectors corresponding to the DOA and DOD of
the mth target, respectively.

Considering the sparsity of targets, the sparse reconstruc-
tion method can be used to estimate target’s 2D parameters.
Then, discretizing the range of DOD and DOA toKd > K and
La > L resolution grids, respectively, we can convert (1) into
the following form:

Y =ΦR θ ΞΦT
T φ + Z, 2

where Ξ is a spare matrix and we can estimate the DOD and
DOA of targets according to the position of nonzero ele-
ments. θ = θ1, θ2,… , θKd

and φ = φ1, φ2,… , φLa
are the

predefined grids. ΦR θ = aR f R
1 , aR f R

2 ,… , aR f R
Kd

and ΦT φ = aT f T
1 , aT f T

2 ,… , aT f T
La

This sparse matrix reconstruction model requires that the
targets must fall on the predefined grids. Practically, no
matter how small we divide the mesh, the targets cannot be
guaranteed to completely fall on the grids. So the perfor-
mance of this method will depend on the way how we
divide the mesh. Reference [11] puts forward an off-grid
model to solve the grid mismatch problem in 1D-DOA
estimation; this idea could be extended to the 2D parameter
estimation situation.

3. Joint Sparse Matrix Reconstruction

The targets’ true and unknown DOA and DOD are α =
α1, α2,… , αD andβ = β1, β2,… , βD , respectively. Approx-
imating the ΦR α and ΦT β by the first-order Taylor
expansion around the predefined grids θ and φ, respectively,

ΦR α =ΦR θ +ΦR θ ′Δ1,

ΦT β =ΦT φ +ΦT φ ′Δ2,
3

whereΦR θ ′ = ∂aR θ1 /∂θ1 ,… , ∂aR θLa /∂θLa ,ΦT φ ′
= ∂aT φ1 /∂φ1 ,… , ∂aT φKd

/∂φKd
, Δ1 = diag α − θ ,

and Δ2 = diag β − φ . We can get the following joint sparse
matrixmodel:

Y = ΦR θ +ΦR θ ′Δ1 Ξ ΦT φ +ΦT φ ′Δ2
T
+ Z

= ΦR θ ΦR θ ′
I

Δ1

Ξ I Δ2
T ΦT φ ΦT φ ′ T

+ Z

= ΦR θ ΦR θ ′
Ξ ΞΔ2

T

Δ1Ξ Δ1ΞΔ2
T

ΦT φ ΦT φ ′ T
+ Z

= ΦR θ ΦR θ ′
Ξ P2

P1 P3

ΦT φ ΦT φ ′ T
+ Z,

4

where P1 = Δ1Ξ, P2 = ΞΔ2
T, P3 = Δ1ΞΔ2

T, and Ξ are joint
sparse matrix, that is, they have the same sparse structure.
That is because whether left multiplied or right multiplied,
a diagonal matrix will not change the sparsity of a sparse
matrix. So we can use (4) to estimate the targets’ DOD and
DOA, and it will not be affected by the grid mismatch
problem.

UsingΦR andΦT to representΦR θ andΦT φ , respec-
tively, (4) can be rewritten as follows:

Y = ΦR ΦR′
Ξ P2

P1 P3

ΦT ΦT′
T
+ Z 5

But how to efficiently solve the joint sparse reconstruc-
tion problem? If we use the Kronecker compressive sens-
ing method (solve (5) by converting it into 1D problem),
it will bring much more computation burden because of
the huge computation complexity of Kronecker product.
Can we directly solve the joint sparse matrix reconstruction
problem in (5)? Reference [9] proposes the 2D smoothed
L0 (2D-SL0) algorithm, and it solves the 2D sparse problem
more easily than the 1D-SL0 algorithm. Based on this, we
revise the 2D-SL0 algorithm and propose the Joint-2D-SL0
algorithm to solve the joint sparse matrix reconstruction
problem. They can be applied to situations where the number
of targets is unknown.

The Gaussian function adopted in the 2D-SL0 is Gσ

X =∑i,jexp − xi,j
2 /σ2 [9]. Here, the Gaussian function

we adopt in the Joint-2D-SL0 algorithm is

Gσ

Ξ P2

P1 P3

=〠
i,j
exp −

Ξi,j
2 + P1i,j

2 + P2i,j
2 + P3i,j

2

σ2

6

It will lead to a joint sparse of Ξ, P1, P2, and P3, that

is, the special case of block sparse of
Ξ P2

P1 P3

. The joint

2D gradient projection method is put forward to solve the
Joint-2D-SL0 function. The gradient of the Joint-2D-SL0
function is
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where σ1 is chosen as σ1 > 8 maxi,j Wi,j and W =

Ξ0 P2
0

P1
0 P3

0
.

The initialization of the joint sparse matrix is

Ξ0 P2
0

P1
0 P3

0
= ΦR ΦR′

†
Y

ΦT
T

ΦT′
T

†

8

The proof is as follows:

Proof

vec
Ξ0 P2

0

P1
0 P3

0
= ΦT ΦT′ ⊗ ΦR ΦR′

†
vec Y

= ΦT ΦT′
†
⊗ ΦR ΦR′

†
vec Y

= vec ΦR ΦR′
†
Y

ΦT
T

ΦT′
T

†

9

The projection onto the feasible set can be obtained by

Ξ P2

P1 P3

=
Ξl P2

l

P1
l P3

l
+ ΦR ΦR′

†

Y − ΦR ΦR′
Ξl P2

l

P1
l P3

l

ΦT
T

ΦT′
T

ΦT
T

ΦT′
T

†

10

The proof is as follows:

Proof. When reconstructing a sparse matrix using the model

Y = ΦR ΦR′
Ξl P2

l

P1
l P3

l
ΦT ΦT′

T
+ Z, we have

Y − ΦR ΦR′
Ξl P2

l

P1
l P3

l
ΦT ΦT′

T

= ΦR ΦR′
Ξ P2

P1 P3

ΦT ΦT′
T

− ΦR ΦR′
Ξl P2

l

P1
l P3

l
ΦT ΦT′

T

= ΦR ΦR′
Ξ P2

P1 P3

−
Ξl P2

l

P1
l P3

l
ΦT ΦT′

T

11

So the minimum L2 estimate of
Ξ P2

P1 P3

−

Ξl P2
l

P1
l P3

l
is

ΦR ΦR′
†

Y − ΦR ΦR′
Ξl P2

l

P1
l P3

l
ΦT ΦT′

T

ΦT ΦT′
T †

12

So the projection onto the feasible set can be obtained by

Ξ P2

P1 P3

=
Ξl P2

l

P1
l P3

l
+ ΦR ΦR′

†

Y − ΦR ΦR′
Ξl P2

l

P1
l P3

l

ΦT
T

ΦT′
T

ΦT
T

ΦT′
T

†

13

Now we get the Joint-2D-SL0 algorithm which is shown
in Algorithm 1.

Remark 1. The internal loop is repeated a fixed and small
number of times (L). That is to say, for increasing the speed,
we do not wait for the steepest ascent algorithm to converge.
This can be justified by the gradual decrease in the value of σ.
And for each σ, we do not need the exact maximizer of Gσ.
We just need to enter the region near the (global) maximizer
of Gσ to escape from its local maximizers.

δ ≜ ∇Gσ

Ξ P2

P1 P3

=

−Ξi,jexp −
Ξi,j

2 + P1i, j
2 + P2i,j

2 + P3i,j
2

σ2 ⋯ −P2i,jexp −
Ξi,j

2 + P1i,j
2 + P2i,j

2 + P3i,j
2

σ2

⋮ ⋱ ⋮

−P1i,jexp −
Ξi,j

2 + P1i,j
2 + P2i,j

2 + P3i,j
2

σ2 ⋯ −P3i,jexp −
Ξi,j

2 + P1i,j
2 + P2i,j

2 + P3i,j
2

σ2

, 7

3International Journal of Antennas and Propagation



Remark 2. Steepest ascent consists of iterations of the form
Ξ P2

P1 P3

←
Ξ P2

P1 P3

+ μj∇Gσ. Here, the step-size

parameters μj should be decreasing, that is, for smaller values
of σ, smaller values of μ j should be applied. Note that instead

of μj only a constant μ appeared. The reason is that by letting

μ j = μσ2 for some constant μ, we have
Ξ P2

P1 P3

←

Ξ P2

P1 P3

+ μσ2∇Gσ =
Ξ P2

P1 P3

+ μδ.

δ = σ2∇Gσ =

−Ξi,jexp −
Ξi,j

2 + P1i,j
2 + P2i,j

2 + P3i,j
2

σ2 ⋯ −P2i,jexp −
Ξi,j

2 + P1i,j
2 + P2i,j

2 + P3i,j
2

σ2

⋮ ⋱ ⋮

−P1i,jexp −
Ξi,j

2 + P1i,j
2 + P2i,j

2 + P3i,j
2

σ2 ⋯ −P3i,jexp −
Ξi,j

2 + P1i,j
2 + P2i,j

2 + P3i,j
2

σ2

14

Initialize:

(1) Let
Ξ0 P2

0

P1
0 P3

0
= ΦR ΦR′

†
Y

ΦT
T

ΦT′
T

†

(2) Choose a suitable decreasing sequence for σ, σ1, σ2,… , σJ .
For j = 1, 2,… , J:
(1) Let σ = σJ

(2) Minimise the function Gσ

Ξ P2

P1 P3

=∑i,jexp − Ξi, j2 + P1i, j2 + P2i, j2 + P3i, j2

σ2
,

on the feasible set
Ξ P2

P1 P3

=
Ξ P2

P1 P3

: ΦR ΦR′
Ξ P2

P1 P3

ΦT
T

ΦT′
T

− Y
2

< ε ,

using L iterations of the steepest descent algorithm (then project
Ξ P2

P1 P3

onto the feasible set):

Initialize:
Ξ P2

P1 P3

=
Ξj−1 Pj−1

2

Pj−1
1 Pj−1

3
For l = 1, 2,… , L

(a) Let

δ ≜ σ2∇Gσ

Ξ P2

P1 P3

=

−Ξi,jexp − Ξi, j2 + P1 i, j2 + P2 i, j2 + P3 i, j2

σ2
⋯ −P2i,jexp − Ξi, j2 + P1 i, j2 + P2 i, j2 + P3 i, j2

σ2

⋮ ⋱ ⋮

−P1i, jexp − Ξi, j2 + P1 i, j2 + P2 i, j2 + P3 i, j2

σ2
⋯ −P3i,jexp − Ξi, j2 + P1 i, j2 + P2 i, j2 + P3 i, j2

σ2

(b) Let
Ξ P2

P1 P3

←
Ξ P2

P1 P3

+ μδ (μ is a small positive constant)

(c) Project
Ξ P2

P1 P3

back onto the feasible set:

Ξ P2

P1 P3

←
Ξ P2

P1 P3

+ ΦR ΦR′
†

Y − ΦR ΦR′
Ξ P2

P1 P3

ΦT
T

ΦT′
T

ΦT
T

ΦT′
T

†

(3) Set
Ξj Pj

2

P j
1 Pj

3

=
Ξ P2

P1 P3

Final answer is:
Ξ P2

P1 P3

=
Ξj P j

2

Pj
1 P j

3

Algorithm 1: The Joint-2D-SL0 algorithm.

4 International Journal of Antennas and Propagation



Remark 3. The initial value our algorithm is the minimum L2

norm solution of Y = ΦR ΦR′
Ξl P2

l

P1
l P3

l
ΦT ΦT′

T

+ Z, which corresponds to σ→∞. And the specific proof
can refer to [15].

Remark 4. Having initiated the algorithm with the minimum
L2 norm solution (which corresponds to σ→∞), the next
value for σ (i.e., σ1) may be about 6 to 12 times of the maxi-
mum absolute value of the obtained sources. Here, we select
σ1 > 8 maxi,j Wi,j . To see the reason, if we take, for example,
σ1 > 8 maxi,j Wi,j , then exp Ξ1i,j

2 + P1i,j
2 + P2i,j

2 + P3i,j
2 /

σ2 > 0 93 ≈ 1 for all i and j. And it shows that this value
of σ acts virtually like infinity for all the values of
Ξ1i,j

2 + P1i,j
2 + P2i,j

2 + P3i,j
2 0 5.

Remark 5. The smallest value of σ should be about three to
six times of (a rough estimation of) the standard deviation
of this noise. This is because, while σ is in this range, the cost
function treats small (noisy) samples as zeros (i.e., for which
exp Ξ1i,j

2 + P1i,j
2 + P2i,j

2 + P3i,j
2 /σ2 ≈ 1). However, below

this range, the algorithm tries to “learn” these noisy values
and moves away from the true answer.

Remark 6. The sequence of σ is always chosen as a decreasing
geometrical sequence σ j = cσj−1, j ≥ 2, which is determined
by the first and last elements, σ1 and σJ , and the scale factor
c. In our simulation, for increasing the speed, we set J = 100.
So c = σJ /σ1

1/J .

4. Simulation Results

In this section, we conduct several simulation experiments to
verify the performance of the proposed model and algorithm.

In the first simulation, we show the correctness of the
proposed Joint-2D-SL0 algorithm. Assume there are 5

targets, their normalized DOA and DOD are [0.34, 0.14,
−0.13, −0.35, and −0.47] and [−0.35, −0.22, −0.13, 0.32,
and 0.41], respectively. There are 20 transmitters and 20
receivers. The grid number of DOD and DOA is 60 and 60,
respectively. The noise is white Gaussian noise. And the
SNR is 20 dB. The input parameters are σmin = 0 1, J = 100,
μ = 2, and L = 3. The result is shown in Figure 1(a). We can
see that the proposed Joint-2D-SL0 algorithm can accurately
estimate the parameters of the target which verifies the
correctness of the proposed algorithm.

Then, we compare the estimation accuracy of the pro-
posed Joint-2D-SL0 algorithm with the estimation accuracy
of Joint-K-SL0 algorithm (solving (5) using Kronecker com-
pressive sensing method) and K-SL0 algorithm (solving (2)
using Kronecker compressive sensing method) and 2D-SL0
algorithm (solving (2) using the method in [9]). The SNR var-
ies from −5dB to 30dB. And the other parameters remain the
same. 200 times simulation is conducted in each SNR. The
simulation result is in Figure 1(b). We can see that the estima-
tion error of the proposed model decreases significantly with
the increase of SNRwhile the estimated error of the traditional
model does not decrease when the SNR is bigger than 0dB.
That is because when SNR>0dB, the estimation error of
traditional model is mainly affected by the grid mismatch
problem. And the increase of SNR will not bring accuracy
improvement. So the proposed off-grid model has a better
performance than the model without considering grid mis-
match problem which proves the validity of the proposed
model. From Figure 1(b), we can see that the estimation
accuracy of standard 2D-SL0 is similar with the estimation
accuracy of K-SL0 algorithm. And their estimation accuracy
is much lower than the estimation accuracy of Joint-2D-SL0.
We also can see that the proposed Joint-2D-SL0 algorithm
has a similar performance with Joint-K-SL0 algorithm which
verifies the effectiveness of the proposed algorithm.

In the third simulation, we compare the running time
of these algorithms. For the convenience of comparison,
we conduct two kinds of contrast experiment. In the first

−0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

DOD

D
O

A

True targets
Estimated targets

(a) Algorithm correctness verification

−5 0 5 10 15 20 25 30
1

2

3

4

5
× 10−3

SNR (dB)

RM
SE

K−SL0 algorithm
Joint−K−SL0 algorithm

Joint−2D−SL0 algorithm
2D−SL0 algorithm

(b) Estimation accuracy comparison of the proposed algorithm

Figure 1: The estimation performance of the proposed algorithms.
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comparative experiment, we set the grid number of DOD
and DOA both to be 60, the number of transmitter and
receiver elements is set to the same value which varies from
15 to 30. And the result is shown in Figure 2(a). In the second
comparative experiment, the number of transmitter and
receiver elements is both set to be 20 while the grid number
of DOD and DOA is set to the same value which varies from
60 to 80. And the result is shown in Figure 2(b). The other
simulation parameters are the same with the first simula-
tion. We can see that the runtime of the proposed 2D
algorithm is the fastest algorithm compared with the K-

SL0 and Joint-K-SL0 algorithms in the two contrast simu-
lation. And the runtime increasing tendency of the pro-
posed 2D method is the lowest compared with the
runtime increasing tendency of the other two algorithms
which proves the efficiency of the proposed Joint-2D-SL0
algorithm. From Figure 2, we can see that the runtime
of standard 2D-SL0 is shorter than that of Joint-2D-SL0.
But the estimation accuracy of standard 2D-SL0 is much
lower than that of Joint-2D-SL0, so we can say that the
proposed Joint-2D-SL0 algorithm can get high estimation
accuracy with acceptable computation complexity.

In the fourth experiment, to show the affection of the
number of iterations, we set J=25, 50, 75, 100, 125, and
150, respectively. The other parameters are same with the
second experiment. And the result is shown in Figure 3.
From this figure, we can see that the estimation accuracy
improved with the increase of J. However, when J reaches
to a certain number, the estimation accuracy remains con-
stant and does not increase anymore. So, the optimal choice
of J depends on the application. When SNR is the essential
criterion, J should be chosen large, but this will result in a
higher computational cost. Therefore, the choice of J is a
trade-off between SNR and computational cost.

5. Conclusion

In this paper, we propose the joint sparse matrix reconstruc-
tion model based on the one-order Taylor expansion and it
can overcome the grid mismatch problem efficiently. Then,
we put forward the Joint-2D-SL0 algorithm to solve the joint
sparse matrix reconstruction problem. Our algorithm can get
high estimation accuracy with acceptable computational
complexity. Simulation experiences verify the effectiveness
of the proposed model and algorithm.
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K−SL0 algorithm
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both set to be 60
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elements both set to be 20

Figure 2: Runtime comparison of algorithm.
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