11 research outputs found

    Location of modulatory β subunits in BK potassium channels

    Get PDF
    Large-conductance voltage- and calcium-activated potassium (BK) channels contain four pore-forming α subunits and four modulatory β subunits. From the extents of disulfide cross-linking in channels on the cell surface between cysteine (Cys) substituted for residues in the first turns in the membrane of the S0 transmembrane (TM) helix, unique to BK α, and of the voltage-sensing domain TM helices S1–S4, we infer that S0 is next to S3 and S4, but not to S1 and S2. Furthermore, of the two β1 TM helices, TM2 is next to S0, and TM1 is next to TM2. Coexpression of α with two substituted Cys’s, one in S0 and one in S2, and β1 also with two substituted Cys’s, one in TM1 and one in TM2, resulted in two αs cross-linked by one β. Thus, each β lies between and can interact with the voltage-sensing domains of two adjacent α subunits

    Characteristics of Acoustic Emission Caused by Intermittent Fatigue of Rock Salt

    No full text
    This paper compares classic (continuous) fatigue tests and fatigue tests carried out with time intervals of no stress in rock salt using a multifunctional testing machine and acoustic emission equipment. The results show that time intervals of no stress have a strong impact on the fatigue activity of rock salt. In fatigue tests with intervals, the residual strain in circles following an interval (α circles) is generally larger than that in circles before the intervals (β circles). The insertion of a time interval with no stress in the fatigue process accelerates the accumulation of residual strain: the longer the interval, the faster the residual strain accumulates during the fatigue process and the shorter the fatigue life of the rock salt. α circles produce a greater number of acoustic emission counts than β circles, which demonstrates that residual stress leads to internal structural adjustment of rock salt on a mesoscopic scale. During intervals of no stress, acoustic emission activity becomes more active in α circles because of reverse softening caused by the Bauschinger effect, which accelerates the accumulation of plastic deformation. A qualitative relationship between the accumulated damage variable and the time interval is established. A threshold in the duration of the time interval exists (around 900 s)

    Characteristics of Acoustic Emission Caused by Intermittent Fatigue of Rock Salt

    No full text
    This paper compares classic (continuous) fatigue tests and fatigue tests carried out with time intervals of no stress in rock salt using a multifunctional testing machine and acoustic emission equipment. The results show that time intervals of no stress have a strong impact on the fatigue activity of rock salt. In fatigue tests with intervals, the residual strain in circles following an interval (α circles) is generally larger than that in circles before the intervals (β circles). The insertion of a time interval with no stress in the fatigue process accelerates the accumulation of residual strain: the longer the interval, the faster the residual strain accumulates during the fatigue process and the shorter the fatigue life of the rock salt. α circles produce a greater number of acoustic emission counts than β circles, which demonstrates that residual stress leads to internal structural adjustment of rock salt on a mesoscopic scale. During intervals of no stress, acoustic emission activity becomes more active in α circles because of reverse softening caused by the Bauschinger effect, which accelerates the accumulation of plastic deformation. A qualitative relationship between the accumulated damage variable and the time interval is established. A threshold in the duration of the time interval exists (around 900 s)

    The C2 Domain and Altered ATP-Binding Loop Phosphorylation at Ser359 Mediate the Redox-Dependent Increase in Protein Kinase C-δ Activity

    No full text
    The diverse roles of protein kinase C-δ (PKCδ) in cellular growth, survival, and injury have been attributed to stimulus-specific differences in PKCδ signaling responses. PKCδ exerts membrane-delimited actions in cells activated by agonists that stimulate phosphoinositide hydrolysis. PKCδ is released from membranes as a Tyr(313)-phosphorylated enzyme that displays a high level of lipid-independent activity and altered substrate specificity during oxidative stress. This study identifies an interaction between PKCδ's Tyr(313)-phosphorylated hinge region and its phosphotyrosine-binding C2 domain that controls PKCδ's enzymology indirectly by decreasing phosphorylation in the kinase domain ATP-positioning loop at Ser(359). We show that wild-type (WT) PKCδ displays a strong preference for substrates with serine as the phosphoacceptor residue at the active site when it harbors phosphomimetic or bulky substitutions at Ser(359.) In contrast, PKCδ-S359A displays lipid-independent activity toward substrates with either a serine or threonine as the phosphoacceptor residue. Additional studies in cardiomyocytes show that oxidative stress decreases Ser(359) phosphorylation on native PKCδ and that PKCδ-S359A overexpression increases basal levels of phosphorylation on substrates with both phosphoacceptor site serine and threonine residues. Collectively, these studies identify a C2 domain-pTyr(313) docking interaction that controls ATP-positioning loop phosphorylation as a novel, dynamically regulated, and physiologically relevant structural determinant of PKCδ catalytic activity
    corecore