536 research outputs found

    A New Single-blade Based Hybrid CFD Method for Hovering and Forward-flight Rotor Computation

    Get PDF
    AbstractA hybrid Euler/full potential/Lagrangian wake method, based on single-blade simulation, for predicting unsteady aerodynamic flow around helicopter rotors in hover and forward flight has been developed. In this method, an Euler solver is used to model the near wake evolution and transonic flow phenomena in the vicinity of the blade, and a full potential equation (FPE) is used to model the isentropic potential flow region far away from the rotor, while the wake effects of other blades and the far wake are incorporated into the flow solution as an induced inflow distribution using a Lagrangian based wake analysis. To further reduce the execution time, the computational fluid dynamics (CFD) solution and rotor wake analysis (including induced velocity update) are conducted parallelly, and a load balancing strategy is employed to account for the information exchange between two solvers. By the developed method, several hover and forward-flight cases on Caradonna-Tung and Helishape 7A rotors are performed. Good agreements of the loadings on blade surface with available measured data demonstrate the validation of the method. Also, the CPU time required for different computation runs is compared in the paper, and the results show that the present hybrid method is superior to conventional CFD method in time cost, and will be more efficient with the number of blades increasing

    The Effect of Artificial Intelligence (AI) on Firm Labor Structure

    Get PDF
    This paper aims to study the effect of AI on firm labor structure. Using a unique panel data of over 1300 publicly listed companies in China from 2007 to 2018, we study the effect of AI on firms’ labor composition measured by labor force’s education levels. We further compare the effect of AI on firms in the manufacturing sector to the effect on firms in the service sector. Our analysis generates two major findings. First, the use of AI leads to a larger labor demand increase for jobs requiring lower education levels than those requiring higher education levels. Second, the effect is stronger in the service sector than in the manufacturing sector. These findings contradict predictions of the “skill-biased technological change” (SJTB) and U-shaped “job polarization” effects proposed in the prior literature. We propose that “technology-enabled deskilling” effect is driving the effect of AI on labor structure

    A Deep Spatiotemporal Attention Network for Mild Cognitive Impairment Identification

    Get PDF
    Mild cognitive impairment (MCI) is a nervous system disease, and its clinical status can be used as an early warning of Alzheimer's disease (AD). Subtle and slow changes in brain structure between patients with MCI and normal controls (NCs) deprive them of effective diagnostic methods. Therefore, the identification of MCI is a challenging task. The current functional brain network (FBN) analysis to predict human brain tissue structure is a new method emerging in recent years, which provides sensitive and effective medical biomarkers for the diagnosis of neurological diseases. Therefore, to address this challenge, we propose a novel Deep Spatiotemporal Attention Network (DSTAN) framework for MCI recognition based on brain functional networks. Specifically, we first extract spatiotemporal features between brain functional signals and FBNs by designing a spatiotemporal convolution strategy (ST-CONV). Then, on this basis, we introduce a learned attention mechanism to further capture brain nodes strongly correlated with MCI. Finally, we fuse spatiotemporal features for MCI recognition. The entire network is trained in an end-to-end fashion. Extensive experiments show that our proposed method significantly outperforms current baselines and state-of-the-art methods, with a classification accuracy of 84.21%

    Effect of potassium simplex optimization medium (KSOM) and embryo screening on the production of human lactoferrin transgenic cloned dairy goats

    Get PDF
    In this study, we produced cloned transgenic dairy goat based on dairy goat ear skin fibroblast as donor cells for nuclear transfer (NT), which were modified by human lactoferrin (hLF) gene. The developmental competence of NT embryos was compared with either between different embryo culture medium, potassium simplex optimization medium (KSOM) and tissue culture medium (TCM 199), or different classification of NT embryos (48 h after fusion). First we cultured NT embryos to cleavage stage (48 h after fusion) by TCM 199 supplemented with 1 mg/ml bovine serum albumin BSA and KSOM, then used TCM 199 supplemented with 10% FBS to culture them to blastula stage. The results show that the NT embryos in KSOM (19.5%) were superior to TCM 199 (10.6%) in blastulation. In the second experiment, we found that the growth rate of NT embryos (48 h after fusion) was different, then we divided them into four groups: 2-cell, 3- to 4-cell, 5- to 8-cell and >8-cell in stereo microscope and cultured them in vitro respectively. The results show day-2 embryos at 3-4cell and 5-8cell stage (31.9 and 28.2%, P < 0.05) had higher blastocyst formation rates than those at both 2-cell (9.1%) and >8-cell (8.3%) stage, and finally three healthy cloned transgenic goat were successfully produced using 3-8 cell embryos at Day-2 (82%). Using Hoechst 33342 staining, we also found that the >8 cells embryos at Day- 2 demonstrated higher frequency of fragmentation, which may be the one cause of the low blastocyst formation rate. This study therefore demonstrates that KSOM medium could be selected as the early embryo culture medium, and 3-8 cell embryos at day-2 (48 h after fusion) may be the suitable embryos for transplantation, which could reduce the nuclei fragmentation and result in good quality blastocysts that may also enhance the efficiency of transgenic cloned dairy goats production, as well as decrease the economic loss due to embryonic mortality when embryos are transferred to synchronized recipients.Key words: Nuclear transfer, KSOM, transgenic, human lactoferrin, dairy goat

    3D-Epigenomic Regulation of Gene Transcription in Hepatocellular Carcinoma.

    Get PDF
    The fundamental cause of transcription dysregulation in hepatocellular carcinoma (HCC) remains elusive. To investigate the underlying mechanisms, comprehensive 3D-epigenomic analyses are performed in cellular models of THLE2 (a normal hepatocytes cell line) and HepG2 (a hepatocellular carcinoma cell line) using integrative approaches for chromatin topology, genomic and epigenomic variation, and transcriptional output. Comparing the 3D-epigenomes in THLE2 and HepG2 reveal that most HCC-associated genes are organized in complex chromatin interactions mediated by RNA polymerase II (RNAPII). Incorporation of genome-wide association studies (GWAS) data enables the identification of non-coding genetic variants that are enriched in distal enhancers connecting to the promoters of HCC-associated genes via long-range chromatin interactions, highlighting their functional roles. Interestingly, CTCF binding and looping proximal to HCC-associated genes appear to form chromatin architectures that overarch RNAPII-mediated chromatin interactions. It is further demonstrated that epigenetic variants by DNA hypomethylation at a subset of CTCF motifs proximal to HCC-associated genes can modify chromatin topological configuration, which in turn alter RNAPII-mediated chromatin interactions and lead to dysregulation of transcription. Together, the 3D-epigenomic analyses provide novel insights of multifaceted interplays involving genetics, epigenetics, and chromatin topology in HCC cells

    In-Orbit Instrument Performance Study and Calibration for POLAR Polarization Measurements

    Full text link
    POLAR is a compact space-borne detector designed to perform reliable measurements of the polarization for transient sources like Gamma-Ray Bursts in the energy range 50-500keV. The instrument works based on the Compton Scattering principle with the plastic scintillators as the main detection material along with the multi-anode photomultiplier tube. POLAR has been launched successfully onboard the Chinese space laboratory TG-2 on 15th September, 2016. In order to reliably reconstruct the polarization information a highly detailed understanding of the instrument is required for both data analysis and Monte Carlo studies. For this purpose a full study of the in-orbit performance was performed in order to obtain the instrument calibration parameters such as noise, pedestal, gain nonlinearity of the electronics, threshold, crosstalk and gain, as well as the effect of temperature on the above parameters. Furthermore the relationship between gain and high voltage of the multi-anode photomultiplier tube has been studied and the errors on all measurement values are presented. Finally the typical systematic error on polarization measurements of Gamma-Ray Bursts due to the measurement error of the calibration parameters are estimated using Monte Carlo simulations.Comment: 43 pages, 30 figures, 1 table; Preprint accepted by NIM

    Resveratrol Ameliorates Glucocorticoid-Induced Bone Damage in a Zebrafish Model

    Get PDF
    Resveratrol (Res) is a multi-functional polyphenol compound that has protective functions in cardiovascular and neurodegenerative diseases. This study aimed to determine the effect of Res on osteogenic differentiation and bone mineralization in zebrafish (Danio rerio) with dexamethasone (Dex)-induced bone damage. Our results showed that Dex exposure (15 Όmol/l) decreased the green fluorescence areas and the integrated optic density (IOD) values in the skull bones of zebrafish larvae of the TG(SP7:EGFP) strain in a dose-dependent manner (p < 0.01). Furthermore, Dex exposure decreased the alizarin red S-stained areas (bone mineralization area) in the skeleton and spinal bones of zebrafish larvae of the AB strain in a dose-dependent manner (p < 0.01). By contrast, Res treatment (150 Όmol/l) significantly increased both the green fluorescence and bone mineralization area in Dex-exposed zebrafish larvae. Thus, our data show that Res improves bone mineralization after glucocorticoid-induced bone damage in a zebrafish model. Res may be a candidate drug for the prevention of osteoporosis

    Interface induced Zeeman-protected superconductivity in ultrathin crystalline lead films

    Full text link
    Two dimensional (2D) superconducting systems are of great importance to exploring exotic quantum physics. Recent development of fabrication techniques stimulates the studies of high quality single crystalline 2D superconductors, where intrinsic properties give rise to unprecedented physical phenomena. Here we report the observation of Zeeman-type spin-orbit interaction protected superconductivity (Zeeman-protected superconductivity) in 4 monolayer (ML) to 6 ML crystalline Pb films grown on striped incommensurate (SIC) Pb layers on Si(111) substrates by molecular beam epitaxy (MBE). Anomalous large in-plane critical field far beyond the Pauli limit is detected, which can be attributed to the Zeeman-protected superconductivity due to the in-plane inversion symmetry breaking at the interface. Our work demonstrates that in superconducting heterostructures the interface can induce Zeeman-type spin-orbit interaction (SOI) and modulate the superconductivity
    • 

    corecore