178 research outputs found

    LOW-VOLTAGE LOW-POWER ANALOG-TO-DIGITAL CONVERTERS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Kemijsko uklanjanja fosfora u karuselskom oksidacijskom kanalu i analiza optimalnih parametara

    Get PDF
    In order to confine the aqua-eutrophication problem arising from phosphorus pollution, many municipal wastewater treatment plants have to improve their executive drainage standard for total phosphorus (TP). In this study, a municipal wastewater treatment plant employing modified Carrousel oxidation ditch as main biological treatment unit was selected as a representative case. Technical necessity for adding a chemically enhanced phosphorus removal unit was analysed, and process feasibility was verified by batch and continuous experiments as well. The study results were summarized as follows. Because the organic carbon source in influent wastewater is not enough, it is impossible to satisfy the national drainage standard of TP by individual biological phosphorus removal processes, therefore, aided chemical phosphorus removal is essential. The polymeric aluminium chloride (PAC) is preferable to be used as precipitant for phosphorus removal. The molar ratio of agent dosage to TP removal is preferable to be about 2.0. Under these conditions, the effluent TP concentration can be lower than 1.0 mg l–1. This work is licensed under a Creative Commons Attribution 4.0 International License.Mnogi mjestni pogoni za pročišćavanje vode moraju poboljšati uklanjanje ukupnog fosfora (TP) radi smanjenja eutrofikacije voda. Ovdje je prikazano postrojenje za pročišćavanje vode s karuselskim oksidacijskim kanalom. Istraženi su tehnički zahtjevi za poboljšano kemijsko uklanjanje fosfora, a proces je ocijenjen prema šaržnim i kontinuiranim eksperimentima. Budući da nedostaje organskog ugljika, ne može se zadovoljiti standard uklanjanja ukupnog fosfora samo biološkim putem. Nužan je kemijski postupak za koji je pogodno taložno sredstvo polimerni aluminijev klorid (PAC). Najbolji množinski omjer sredstva za obradu vode i TP-a je oko 2,0. Pri takvim uvjetima izlazna koncentracija TP-a može biti niža od 1,0 mg l–1. Ovo djelo je dano na korištenje pod licencom Creative Commons Imenovanje 4.0 međunarodna

    Value Engineering for Flat Bottom Steep Projects: Cost-Control Objects Selection

    Get PDF
    Value engneering is an effective method to cutdown costs and increase economic benefits. It is said that 80% of the manufacturing cost is decided by the design phase, so the high manufacturing costs of the flat bottom steep will undoubtely increase the costs of malting and reduce the profitability of the enterprise, showing that there are lots of parts can be optimized in the design phase. Therefore, it is necessary to deploy value engineering theory to the product design phase in order to select the objects of innovation and to control the costs of flat bottom steep effectively. Key words: Value engineering; Flat bottom steep; Customer demands analysis; Cost-Control object

    Robust Average Formation Tracking for Multi-Agent Systems With Multiple Leaders

    Get PDF
    In this paper, the formation tracking problem of the multi-agent system under disturbances and unmodeled uncertainties has been studied. An identifier-based robust control algorithm using the neighboring relative information has been proposed to ensure the followers to maintain a given, and time-varying formation and track the average state of the leaders at the same time. Some sufficient conditions for the second-order multi-agent system with multiple leaders in the presence of disturbances and unmodeled uncertainties have been proposed based on the graph theory and the Lyapunov method. Numerical simulations are provided to testify the validity of the algorithm

    A new unsupervised pseudo-siamese network with two filling strategies for image denoising and quality enhancement

    Get PDF
    Digital image noise may be introduced during acquisition, transmission, or processing and affects readability and image processing effectiveness. The accuracy of established image processing techniques, such as segmentation, recognition, and edge detection, is adversely impacted by noise. There exists an extensive body of work which focuses on circumventing such issues through digital image enhancement and noise reduction, but this work is limited by a number of constraints including the application of non-adaptive parameters, potential loss of edge detail information, and (with supervised approaches) a requirement for clean, labeled, training data. This paper, developed on the principle of Noise2Void, presents a new unsupervised learning approach incorporating a pseudo-siamese network. Our method enables image denoising without the need for clean images or paired noise images, instead requiring only noise images. Two independent branches of the network utilize different filling strategies, namely zero filling and adjacent pixel filling. Then, the network employs a loss function to improve the similarity of the results in the two branches. We also modify the Efficient Channel Attention module to extract more diverse features and improve performance on the basis of global average pooling. Experimental results show that compared with traditional methods, the pseudo-siamese network has a greater improvement on the ADNI dataset in terms of quantitative and qualitative evaluation. Our method therefore has practical utility in cases where clean images are difficult to obtain

    Quantifying the impact of synoptic circulation patterns on ozone variability in northern China from April to October 2013-2017

    Get PDF
    The characteristics of ozone variations and the impacts of synoptic and local meteorological factors in northern China were quantitatively analyzed during the warm season from 2013 to 2017 based on multi-city in situ ozone and meteorological data as well as meteorological reanalysis. The domain-averaged maximum daily 8 h running average O-3 (MDA8 O-3) concentration was 122 +/- 11 mu g m(-3), with an increase rate of 7.88 lug mu g m(-3) yr(-1), and the three most polluted months were closely related to the variations in the synoptic circulation patterns, which occurred in June (149 mu m(-3)), May (138 mu m(-3)) and July (132 mu g m(-3)). A total of 26 weather types (merged into five weather categories) were objectively identified using the Lamb-Jenkinson method. The highly polluted weather categories included the S-W-N directions (geostrophic wind direction diverts from south to north), low-pressure-related weather types (LP) and cyclone type, which the study area controlled by a low-pressure center (C), and the corresponding domain-averaged MDA8 03 concentrations were 122, 126 and 128 mu g m(-3), respectively. Based on the frequency and intensity changes of the synoptic circulation patterns, 39.2 % of the interannual increase in the domain-averaged O-3 from 2013 to 2017 was attributed to synoptic changes, and the intensity of the synoptic circulation patterns was the dominant factor. Using synoptic classification and local meteorological factors, the segmented synoptic-regression approach was established to evaluate and forecast daily ozone variability on an urban scale. The results showed that this method is practical in most cities, and the dominant factors are the maximum temperature, southerly winds, relative humidity on the previous day and on the same day, and total cloud cover. Overall, 41 %-63 % of the day-today variability in the MDA8 O-3 concentrations was due to local meteorological variations in most cities over northern China, except for two cities: QHD (Qinhuangdao) at 34 % and ZZ (Zhengzhou) at 20 %. Our quantitative exploration of the influence of both synoptic and local meteorological factors on interannual and day-to-day ozone variability will provide a scientific basis for evaluating emission reduction measures that have been implemented by the national and local governments to mitigate air pollution in northern China.Peer reviewe

    Pharmacokinetics, Bioavailability, and Tissue Distribution Study of Angoroside C and Its Metabolite Ferulic Acid in Rat Using UPLC-MS/MS

    Get PDF
    Angoroside C is a phenylpropanoid glycoside compound isolated from the dried root of Scrophularia ningpoensis Hemsl., which possesses the effects of preventing ventricular remodeling, reducing pulmonary oedema, and reducing blood pressure, as well as having the properties of anti-platelet aggregation, hepatoprotection and anti-nephritis, etc. However, few investigations have been conducted on the absorption, distribution, metabolism, and excretion (ADME) study of angoroside C. Thus, a fast ultra-high performance liquid chromatography-tandem quadrupole mass spectrometry (UPLC-MS/MS) method was established for the determination of angoroside C and its metabolite ferulic acid in rat plasma and tissue homogenate. The two analytes were extracted from the biosamples using a simple protein precipitation with acetonitrile. The developed method was validated and successfully applied to the pharmacokinetics, bioavailability and tissue distribution study after the intragastric administration of angoroside C (100 mg/kg) or the intravenous administration of angoroside C (5 mg/kg), respectively. The results showed that angoroside C can be absorbed extremely quickly (Tmax = 15 min), can be eliminated very rapidly (t1/2 = 1.26 h), and its oral bioavailability is only about 2.1%. Furthermore, angoroside C was extensively distributed in all main organs (liver, heart, spleen, lung, kidney, and brain), and the highest concentration was detected in the lung 15 min after oral administration. This paper also indicated that angoroside C could be converted to the active metabolite ferulic acid in vivo. The maximum concentrations of ferulic acid in the kidney occurred at 6 h after oral administration. In summary, this study explored some of the pharmacokinetic characteristics of angoroside C in vivo, and the data produced could provide a basis for the further investigation of angoroside C

    Exploring the regional pollution characteristics and meteorological formation mechanism of PM2.5 in North China during 2013–2017

    Get PDF
    In the last decade, North China (NC) has been one of the most populated and polluted regions in the world. The regional air pollution has had a serious impact on people's health; thus, all levels of government have implemented various pollution prevention measures since 2013. Based on multi-city in situ environmental and meteorological data, as well as the meteorological reanalysis dataset from 2013 to 2017, regional pollution characteristics and meteorological formation mechanisms were analyzed to provide a more comprehensive understanding of the evolution of PM2.5 in NC. The domain-averaged PM2.5 was 79 +/- 17 mu g m(-3) from 2013 to 2017, with a decreasing rate of 10 mu g m(-3) yr(-1). Two automatic computer algorithms were established to identify 6 daily regional pollution types (DRPTs) and 48 persistent regional pollution events (PRPEs) over NC during 2014-2017. The average PM2.5 concentration for the Large-Region-Pollution type (including the Large-Moderate-Region-Pollution and Large-Severe-Region-Pollution types) was 113 +/- 40 mu g m(-3), and more than half of Large-Region-Pollution days and PRPEs occurred in winter. The PRPEs in NC mainly developed from the area south of Hebei. The number of Large-Region-Pollution days decreased notably from 2014 to 2017, the annual number of days varying between 194 and 97 days, whereas a slight decline was observed in winter. In addition, the averaged PM2.5 concentrations and the numbers and durations of the PRPEs decreased. Lamb-Jenkinson weather typing was used to reveal the impact of synoptic circulations on PM2.5 across NC. Generally, the contributions of the variations in circulation to the reduction in PM2.5 levels over NC between 2013 and 2017 were 64% and 45% in summer and winter, respectively. The three most highly polluted weather types were types C, S and E, with an average PM2.5 concentration of 137 +/- 40 mu g m(-3) in winter. Furthermore, three typical circulation dynamics were categorized in the peak stage of the PRPEs, namely, the southerly airflow pattern, the northerly airflow pattern and anticyclone pattern; the averaged relative humidity, recirculation index, wind speed and boundary layer height were 63%, 0.33, 2.0 m s(-1) and 493 m, respectively. Our results imply that additional emission reduction measures should be implemented under unfavorable meteorological situations to attain ambient air quality standards in the future.Peer reviewe
    corecore