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Abstract: In this paper, the formation tracking problem of the multi-agent system under
disturbances and unmodeled uncertainties has been studied. An identifier-based robust control
algorithm using the neighboring relative information has been proposed to ensure the followers
to maintain a given, and time-varying formation and track the average state of the leaders at
the same time. Some sufficient conditions for the second-order multi-agent system with multiple
leaders in the presence of disturbances and unmodeled uncertainties have been proposed based
on the graph theory and the Lyapunov method. Numerical simulations are provided to testify
the validity of the algorithm.

Keywords: Formation control, Robust formation tracking, Multi-agent systems, Lyapunov
analysis.

1. INTRODUCTION

Formation control is a fundamental topic in cooperative
control, whose control objective is to make multiple a-
gents maintain some predefined, potentially time-varying,
formation under a coordinated control scheme, when the
agents carry out a given task. The applications of forma-
tion control range from military field to civil field including
exploration of unknown environments (Das et al., 2002),
search and rescue operation (Chen and Wang, 2005), per-
formance of uninhabited combat air vehicles (UCAVs)
(Duan et al., 2008).

The formation problem for multi-agent systems has been
studied far and wide in the existing literature, and the past
decades have witnessed significant advances in this field.
For instance, Balch and Arkin (1998) presents a behavior-
based approach to robotic line formation-keeping, which
enables three behaviors, i.e., moving to the destination,
avoiding obstacles, and formation keeping, to perform si-
multaneously and cooperatively. In Ren and Beard (2004,
2002), the virtual structure approach is proposed, where
the whole formation is treated as a single structure.
Shao et al. (2007) provides a leader-following approach to
achieve predetermined formations for controlling groups
of autonomous mobile vehicles, just like Ren and Sorensen
(2008), Mylvaganam and Astolfi (2015), Wang and Ding
(2014), where only formation control problems are consid-
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ered. In Dong et al. (2015a), tracking problems are taken
into account, where the followers form a given, and time-
varying formation while tracking the state of the leader,
but the problem are limited to the case of one leader.
The formation containment problem for swarm systems is
considered in Ferrari-Trecate et al. (2006), Liu et al. (2014)
and Dimarogonas et al. (2006). Dong et al. (2015b) inves-
tigates the formation containment problem in the multiple
leaders case, presenting protocols to make the leaders to
realize the expected formation and make the followers to
converge to the convex hull of the states of leaders. In
Lewis and Tan (1997), virtual agents, determined by the
desired formation, are brought in for each agent corre-
spondingly, which transforms the formation problem into
a consensus problem (Hu, 2012; Liu et al., 2012, 2016).
Dong et al. (2016) considers the average formation tracking
problem for second-order multi-agent systems with mul-
tiple leaders and directed interaction topologies. Despite
the considerable achievements on formation control, one
critical issue arises when the robustness of the formation
strategy is required.

It is ineluctable that disturbances and unmodeled un-
certainties exist in practical situation, while most of the
existing work on the formation problem relies on the
assumption that we know the exact model of the agent
dynamics, without taking into account the disturbances
and unmodeled uncertainties. Actuated by this fact, we
are going to improve the robustness of the formation
strategy by introducing an identifier to compensate for the
disturbances and unmodeled uncertainties.
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The objective of this paper is to address the formation
tracking problem for the second-order multi-agent system
with multiple leaders in the presence of disturbances and
unmodeled uncertainties. Only a subset of followers are
informed of the time-varying states of the multiple leaders.
First, an identifier is designed to identify and compensate
for the disturbances and unmodeled uncertainties. Second,
an identifier-based formation tracking protocol is proposed
such that the states of the followers can maintain a given,
and time-varying formation and track the average state
of the leaders at the same time. When compared to the
previous work on formation tracking control (Lin et al.,
2005) (Balch and Arkin, 1998) (Dong et al., 2015a) (Dong
et al., 2016), the contribution of this paper is that we
propose a robust formation tracking control algorithm
based on a nonlinear identifier, where the influence of
the disturbances and unmodeled uncertainties can be
eliminated.

This paper is organized as follows. In Section II, some
basic notations on graph theory and some useful results
on nonlinear systems are reviewed, and the problem for-
mulation is described. Section III presents the identifier-
based robust control algorithm to address the formation
tracking problem, and some sufficient conditions are given
to guarantee the multi-agent system to reach the control
objective. The numerical simulations are provided in Sec-
tion IV. Section V concludes the entire paper.

2. PRELIMINARIES

2.1 Notions and useful results

Some notions from algebraic graph theory are presented
following (Godsil and Royle, 2013). A directed graph is
denoted by G = {V, E ,W}, where V = {1, 2, . . . N} is
the set of agents, E ∈ V × V is the set of edges, and
W = [wij ], i, j = 1, 2, ..., N is the weighted adjacency
matrix with elements wij . If (j, i) ∈ E , then wij > 0,
otherwise wij = 0 and the diagonal entries of W are zero,
i.e., wii = 0. Let Ni = {j ∈ V : (j, i) ∈ E}. G is said
to be undirected if,(i, j) ∈ E implies that (j, i) ∈ E . A
directed path from agent i to agent j is a sequence of edges
(i, s1), (s1, s2), ..., (sk, j), where (i, s1), (s1, s2), ..., (sk, j) ∈
E . G is said to be strongly connected if, any pair of agents
in the graph are linked by a path. The Laplacian matrix
of G is denoted as: L = [lij ] ∈ Rn×n, lii =

∑n
j=1 wij , and

lij = −wij , for i ̸= j. It is clear that matrix L is symmetric
if the graph is undirected.

Lemma 1. (Khalil and Grizzle, 1996) Consider the system
ẋ = f(t, x), where f(t, x) is piecewise continuous in t, and
locally Lipschitz in x on [0,∞) × D, where D ∈ R is a
domain containing the origin x = 0. And the origin x = 0
satisfies that, for all t ≥ 0, f(t, x) is uniformly bounded.
Let V : [0,∞) × D → R be a continuously differentiable
function such that the following inequality satisfied

W1(x) ≤ V (t, x) ≤ W2(x),

V̇ (t, x) =
∂V

∂t
+

∂V

∂x
f(t, x) ≤ −W3(x),

for all t ≥ 0 and x ∈ D, whereW1(x) andW2(x) are contin-
uous positive definite functions and W3(x) is a continuous

positive semidefinite function on D. Select r > 0 and
s > 0 so that Br ⊂ D and s < min

∥x∥=r
W1(x). Therefor, all

solutions of ẋ = f(t, x) with x(0) ∈ {x ∈ Br|W2(x) ≤ s}
are bounded and when t → ∞, it has

W3(x(t)) → 0.

What’s more, the argument holds for x(0) ∈ Rn if the fol-
lowing two conditions are satisfied: (i) all the assumptions
hold globally, (ii) W1(x) is radially unbounded.

2.2 Problem formulation

Consider a second-order multi-agent system consisting of
N agents distributed on graph G. It is assumed that there
exist M (M < N) followers and N − M leaders. Let
F = {1, 2, . . .M} and E = {M+1,M+2, . . . N} denote the
set of followers and the set of leaders, respectively. A leader
is an agent who does not receive any information from
others. Otherwise, it is called a follower. The dynamics of
the follower i is given by




ẋi(t) = vi(t),
v̇i(t) = αxxi(t) + αvvi(t) + ui(t) + δi(t), i ∈ F,
ẋl(t) = vl(t),
v̇l(t) = αxxl(t) + αvvl(t), l ∈ E,

(2.1)

where xi(t), vi(t) ∈ Rn are the position and the velocity
of the follower i, xl(t), vl(t) ∈ Rn are the position and the
velocity of the leader l. ui(t) ∈ Rn is the control input.
δi(t) is given by δi(t) = δ1i(t) + δ2i(vi), where δ1i(t) ∈ Rn

is the disturbance, and δ2i(vi) ∈ Rn is the unmodeled
dynamics. The disturbance δ1i(t) and its first order and
second-order time derivatives are bounded, i.e., δ1i(t),
˙δ1i(t), δ̈1i(t) ∈ L∞, i = 1, ...,M . The unmodeled dynamics
δ2i(t) and its first order and second-order derivatives with
regard to xi are bounded, i.e., if xi ∈ L∞, then δ2i(t),
∂δ2i(t)
∂xi

, ∂2δ2i(t)
∂2xi

∈ L∞, i = 1, ...,M . αx ∈ R and αv ∈ R are
known constant damping gains. Let n = 1 for briefness. It
can be proved that all the results still hold when n > 1
using the property of Kronecker product.

The state of the followers are expected to maintain a
time-varying formation. A piecewise continuously differ-
entiable vector di(t) = [dxi(t), dvi(t)]

T (i ∈ F ) repre-
sents the the expected time-varying formation for fol-
lowers, and DF (t) = [dT 1(t), ..., d

T
M (t)]T . Let ξi(t) =

[xi(t), vi(t)]
T , i = 1, ..., N , and ξF (t) = [ξT 1(t), ..., ξ

T
M (t)]T .

Definition 1. (Dong et al., 2016) The multi-agent system
(2.1) is said to achieve average formation tracking if for
any given bounded initial states and any i ∈ F ,

lim
t→∞

(
ξi(t)− di(t)−

1

N −M

N∑
l=M+1

ξl(t)

)
= 0.

The interaction topology of the multi-agent system (2.1)
is described by the directed graph G. From the definitions
of the leader and the follower, the Laplacian matrix of the
directed graph G is written as

L =

[
L1 L2

0(N−M)×M 0(N−M)×(N−M)

]
,
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satisfies that, for all t ≥ 0, f(t, x) is uniformly bounded.
Let V : [0,∞) × D → R be a continuously differentiable
function such that the following inequality satisfied

W1(x) ≤ V (t, x) ≤ W2(x),

V̇ (t, x) =
∂V

∂t
+

∂V

∂x
f(t, x) ≤ −W3(x),

for all t ≥ 0 and x ∈ D, whereW1(x) andW2(x) are contin-
uous positive definite functions and W3(x) is a continuous

positive semidefinite function on D. Select r > 0 and
s > 0 so that Br ⊂ D and s < min

∥x∥=r
W1(x). Therefor, all

solutions of ẋ = f(t, x) with x(0) ∈ {x ∈ Br|W2(x) ≤ s}
are bounded and when t → ∞, it has

W3(x(t)) → 0.

What’s more, the argument holds for x(0) ∈ Rn if the fol-
lowing two conditions are satisfied: (i) all the assumptions
hold globally, (ii) W1(x) is radially unbounded.

2.2 Problem formulation

Consider a second-order multi-agent system consisting of
N agents distributed on graph G. It is assumed that there
exist M (M < N) followers and N − M leaders. Let
F = {1, 2, . . .M} and E = {M+1,M+2, . . . N} denote the
set of followers and the set of leaders, respectively. A leader
is an agent who does not receive any information from
others. Otherwise, it is called a follower. The dynamics of
the follower i is given by




ẋi(t) = vi(t),
v̇i(t) = αxxi(t) + αvvi(t) + ui(t) + δi(t), i ∈ F,
ẋl(t) = vl(t),
v̇l(t) = αxxl(t) + αvvl(t), l ∈ E,

(2.1)

where xi(t), vi(t) ∈ Rn are the position and the velocity
of the follower i, xl(t), vl(t) ∈ Rn are the position and the
velocity of the leader l. ui(t) ∈ Rn is the control input.
δi(t) is given by δi(t) = δ1i(t) + δ2i(vi), where δ1i(t) ∈ Rn

is the disturbance, and δ2i(vi) ∈ Rn is the unmodeled
dynamics. The disturbance δ1i(t) and its first order and
second-order time derivatives are bounded, i.e., δ1i(t),
˙δ1i(t), δ̈1i(t) ∈ L∞, i = 1, ...,M . The unmodeled dynamics
δ2i(t) and its first order and second-order derivatives with
regard to xi are bounded, i.e., if xi ∈ L∞, then δ2i(t),
∂δ2i(t)
∂xi

, ∂2δ2i(t)
∂2xi

∈ L∞, i = 1, ...,M . αx ∈ R and αv ∈ R are
known constant damping gains. Let n = 1 for briefness. It
can be proved that all the results still hold when n > 1
using the property of Kronecker product.

The state of the followers are expected to maintain a
time-varying formation. A piecewise continuously differ-
entiable vector di(t) = [dxi(t), dvi(t)]

T (i ∈ F ) repre-
sents the the expected time-varying formation for fol-
lowers, and DF (t) = [dT 1(t), ..., d

T
M (t)]T . Let ξi(t) =

[xi(t), vi(t)]
T , i = 1, ..., N , and ξF (t) = [ξT 1(t), ..., ξ

T
M (t)]T .

Definition 1. (Dong et al., 2016) The multi-agent system
(2.1) is said to achieve average formation tracking if for
any given bounded initial states and any i ∈ F ,

lim
t→∞

(
ξi(t)− di(t)−

1

N −M

N∑
l=M+1

ξl(t)

)
= 0.

The interaction topology of the multi-agent system (2.1)
is described by the directed graph G. From the definitions
of the leader and the follower, the Laplacian matrix of the
directed graph G is written as

L =

[
L1 L2

0(N−M)×M 0(N−M)×(N−M)

]
,
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where L1 ∈ RM×M is the interaction among the followers,
and L2 ∈ RM×(N−M) denotes the connections from the
leaders to the followers.

Assumption 1. For any follower, its neighbor set contains
either all the leaders or no leaders. For each follower whose
neighbor set contains no leaders, there exists at least one
directed path from each leader to it.

Lemma 2. (Dong et al., 2016) If the directed graph G
satisfies Assumption 1, then all the eigenvalues of L1 have
positive real parts; all the entries of −L−1

1 L2 are identical
and equal to 1/(N −M).

Remark 1. If the undirected graph G1 is connected, and
satisfies Assumption 1, then the symmetric matrix L1 is
positive definite.

3. MAIN RESULTS

In this section, we consider the multi-agent system (2.1) in
the presence of disturbance and unmodeled dynamics. The
average formation tracking analysis and design problems
are studied. Some sufficient conditions are proposed to
achieve the control objective.

Define ζi(t) = ξi(t) − di(t), i ∈ F , and let ζi(t) =
[ζxi(t), ζvi(t)]

T and ζF (t) = [ζT 1(t), ..., ζ
T
M (t)]T .

Let

ηxi(t) =

M∑
j=1

wij(t)(ζxi(t)− ζxj(t))

+

N∑
l=M+1

wil(t)(ζxi(t)− xl(t)),

ηvi(t) =
M∑
j=1

wij(t)(ζvi(t)− ζvj(t))

+
N∑

l=M+1

wil(t)(ζvi(t)− vl(t)),

ηi(t) = βηxi(t) + ηvi(t),

where i ∈ F , β ∈ R is a positive constant scalar to be
designed.

In order to compensate for the disturbance and unmodeled
dynamics in the agent dynamics, we develop a nonlin-
ear observer to estimate the disturbance and unmodeled
dynamics. Denote δ̂i(t) ∈ R is the observer to estimate
the disturbance and unmodeled dynamics. Inspired by Hu
(2012), Hu et al. (2008) and Makkar et al. (2007), the
estimation strategies for δi(t) ∈ R is designed as

˙̂
δi(t) = k1η̇i(t) + k2sgn(ηi(t)) + k3ηi(t), (3.2)

where k1, k2, k3 ∈ R are positive constant control gains.

Let α = [αx, αv]. Based on the nonlinear observer (3.2),
the following robust average formation tracking scheme is
proposed.

ui(t) = −δ̂i(t) + kηi(t)− αdi(t) + ḋvi(t), (3.3)

where i ∈ F , k ∈ R is a positive constant control gain.

It’s worth mentioning that we use the integral form of
˙̂
δi(t)

instead of using
˙̂
δi(t) itself in our work, because the term

η̇i(t) is unmeasurable, failing to generate
˙̂
δi(t) in a direct

way (Hu, 2012). The integral form of
˙̂
δi(t) is

δ̂i(t) = k1(ηi(t)− ηi(0))

+

∫ t

0

(k2sgn(ηi(τ)) + k3ηi(τ))dτ.

Let

X(t) = [x1(t), ..., xN (t)]T , V (t) = [v1(t), ..., vN (t)]T ,

U(t) = [u1(t), ..., uM (t)]T ,ηFx(t) = [ηx1(t), ..., ηxM (t)]T ,

ηFv(t) = [ηv1(t), ..., ηvM (t)]T ,ηF (t) = [η1(t), ..., ηM (t)]T ,

∆(t) = [δ11(t) + δ21, ..., δ1M (t) + δ2M ]T ,

∆̂(t) = [δ̂1(t), ..., δ̂M (t)]T .

Then,

ηFx(t) = L1ζx(t) + L2XE(t), (3.4)

ηFv(t) = L1ζv(t) + L2VE(t), (3.5)

ηF (t) = β(L1ζx(t) + L2XE(t))

+ L1ζv(t) + L2VE(t), (3.6)

∆̂(t) = k1(ηF (t)− ηF (0))

+

∫ t

0

(k2sgn(ηF (t)) + k3ηF (t))dτ, (3.7)

U(t) = −∆̂(t) + kηF (t)− αDF (t) + ḊFv(t). (3.8)

From (3.4)-(3.8), we have

η̇Fx(t) = ηFv(t) = L1ζv(t) + L2VE(t), (3.9)

η̇F (t) = βη̇Fx(t) + η̇Fv(t)

= L1(αζF (t) + βζv(t) + kηF (t)− ∆̂(t) + ∆(t))

+ L2(βVE(t) + V̇E(t)). (3.10)

Lemma 3. The multi-agent system (2.1) achieves robust
average formation tracking, if and only if ηF (t) = 0.

Proof. Let Si(t) = [ηxi(t), ηvi(t)]
T
, and SF (t) =

[S1(t), ..., SM (t)]
T
. If ηF (t) = 0 holds, it can be obtained

from (3.4)-(3.8) that ηFx(t) = 0 and ηFv(t) = 0. Further-
more, we have SF (t) = 0. Based on (3.4)-(3.10), we can get

SF (t) = (L1 ⊗ I2)ζF (t) + (L2 ⊗ I2)ξE(t). (3.11)

So, if lim
t→∞

SF (t) = 0, then lim
t→∞

((L1 ⊗ I2)ζF (t) + (L2 ⊗
I2)ξE(t)) = 0. Note that L1 is nonsingular, we can pre-
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multiply the both sides of (3.11) by L−1
1 , then one gets

lim
t→∞

(ζF (t) + (L−1
1 L2 ⊗ I2)ξE(t)) = 0,

which can be written as

lim
t→∞

(ξF (t)−DF (t)− (−L−1
1 L2 ⊗ I2)ξE(t)) = 0. (3.12)

According to Lemma 2, we can see that (3.12) is equivalent
to

lim
t→∞

(
ξi(t)− di(t)−

1

N −M

N∑
l=M+1

ξl(t)

)
= 0,

which is the control objective. Thus, ηF (t) = 0 is the
necessary and sufficient conditions for the multi-agent
system (2.1) to achieve robust average formation tracking.
This is the end of the proof.

Remark 2. Lemma 3 transforms the formation tracking
problem into the convergence problem. In the case where
M = N − 1, which means there is only one leader in
the multi-agent system, the results can also be applied
to tackle the formation tracking problem.

Define

s(t) = L−1
1 η̇F (t)− kηF (t)

= Z(t)− ∆̂(t),
(3.13)

where

Z(t) = αζF (t) + βζv(t) + ∆(t) + L−1
1 L2(βVE(t) + V̇E(t)).

Remark 3. It can be easily proved that lim
t→∞

s(t) = 0

ensures lim
t→∞

ηF (t) = 0, by taking Lyapunov stability

analysis while choosing a Lyapunov function V [ηF (t)] =
1
2η

T
F (t)L

−1
1 ηF (t).

From (3.13), it can be obtained that

ṡ(t) = Ż(t)− ˙̂
∆(t)

= Ż(t) + Ξ(t)− k1L1q(t)− k2sgn(ηF (t))− ηF (t),

where Ξ(t) ∈ Rn, and

Ξ(t) = ηF (t)− k3ηF (t)+kk1L1ηF (t).

Let k3 = 1 for simplicity, then Ξ(t) = kk1L1ηF (t).

Remark 4. If matric L1 is positive definite, then ∥L1∥
is upper bounded by max

i
{λi(L1)}, where λi(L1) is the

eigenvalue of matrix L1. On the basis of Remark 1, it can
be proved that

���Ż(t)
��� ≤ θ1,

���L−1
1 Z̈(t)

��� ≤ θ2,

where θ1, θ2 ∈ R denote known positive constants.

Lemma 4. If the control gains k and k2 satisfy the follow-
ing conditions

k2 −
���Ż(t)

��� > 0, (3.14)

a
√

(N −M)k2 − b

(���Ż(t)
���+

1

k

���L−1
1 Z̈(t)

���
)

> 0,

(3.15)

where a = min
i
{λi(L1)}, b = max

i
{λi(L1)} represent the

minimum and maximum eigenvalue of matrix L1. Then

h(t) = ηF (0)
T (k2sgn(ηF (0))− Ż(0))− φ(t) ≥ 0, (3.16)

where φ(t) is determined by

φ̇(t) = s(t)TL1(Ż(t)− k2sgn(ηF (t))).

Proof. Based on (3.13), φ(t) can be

φ(t) = (ηF (t)
T Ż(t)− ηF (0)

T Ż(0))

−(ηF (t)
T k2sgn(ηF (t))− ηF (0)

T k2sgn(ηF (0)))

+

∫ t

0

kL1ηF (τ)
T
(k2sgn(ηF (τ))− Ż(τ)− 1

k
L−1
1 Z̈(τ))dτ.

Define

Ψ(τ) = ∥L1ηF (τ)∥
(���Ż(τ)

���+
1

k

���L−1
1 Z̈(τ)

���
)

−k2ηF (τ)
TL1sgn(ηF (τ)).

It can be derived on account of ∥L1ηF (τ)∥ ≤ b ∥ηF (τ)∥
and ηF (τ)

TL1sgn(ηF (τ)) ≥ a
√

(N −M) ∥ηF (τ)∥ that

Ψ(τ) ≤ b ∥ηF (τ)∥
(���Ż(τ)

���+
1

k

���L−1
1 Z̈(τ)

���
)

−a
√

(N −M)k2 ∥ηF (τ)∥ .

Thus, if (3.14)-(3.15) hold, then

φ(t) ≤ ηF (0)
T k2sgn(ηF (0))− ηF (0)

T Ż(0),

which proved the validity of (3.16). This is the end of the
proof.

Inspired by the identifier-based robust control in previous
work Hu (2012), we can have the following theorem.

Theorem 1. The multi-agent system (2.1) with control
(3.3) achieves robust average formation tracking, if the
parameters satisfy the following conditions

k3 = 1, (3.17)

k2 − θ1 > 0, (3.18)

k2 −
b(kθ1 + θ2)

a
√
(N −M)k

> 0, (3.19)

kk1L1 − 2I < 0, (3.20)

2γkL1 − I > 0, (3.21)

where 0 < γ < β can be any constant scalar.

Proof. Define Λ(t) = [ηFx(t)
T ,ηF (t)

T , s(t)
T
,
√
φ(t)]T .

We use

V (t,Λ) =
1

2
ηFx(t)

T ηFx(t) +
1

2
ηF (t)

T ηF (t)

+
1

2
s(t)TL1s(t)+φ(t)
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multiply the both sides of (3.11) by L−1
1 , then one gets

lim
t→∞

(ζF (t) + (L−1
1 L2 ⊗ I2)ξE(t)) = 0,

which can be written as

lim
t→∞

(ξF (t)−DF (t)− (−L−1
1 L2 ⊗ I2)ξE(t)) = 0. (3.12)

According to Lemma 2, we can see that (3.12) is equivalent
to

lim
t→∞

(
ξi(t)− di(t)−

1

N −M

N∑
l=M+1

ξl(t)

)
= 0,

which is the control objective. Thus, ηF (t) = 0 is the
necessary and sufficient conditions for the multi-agent
system (2.1) to achieve robust average formation tracking.
This is the end of the proof.

Remark 2. Lemma 3 transforms the formation tracking
problem into the convergence problem. In the case where
M = N − 1, which means there is only one leader in
the multi-agent system, the results can also be applied
to tackle the formation tracking problem.

Define

s(t) = L−1
1 η̇F (t)− kηF (t)

= Z(t)− ∆̂(t),
(3.13)

where

Z(t) = αζF (t) + βζv(t) + ∆(t) + L−1
1 L2(βVE(t) + V̇E(t)).

Remark 3. It can be easily proved that lim
t→∞

s(t) = 0

ensures lim
t→∞

ηF (t) = 0, by taking Lyapunov stability

analysis while choosing a Lyapunov function V [ηF (t)] =
1
2η

T
F (t)L

−1
1 ηF (t).

From (3.13), it can be obtained that

ṡ(t) = Ż(t)− ˙̂
∆(t)

= Ż(t) + Ξ(t)− k1L1q(t)− k2sgn(ηF (t))− ηF (t),

where Ξ(t) ∈ Rn, and

Ξ(t) = ηF (t)− k3ηF (t)+kk1L1ηF (t).

Let k3 = 1 for simplicity, then Ξ(t) = kk1L1ηF (t).

Remark 4. If matric L1 is positive definite, then ∥L1∥
is upper bounded by max

i
{λi(L1)}, where λi(L1) is the

eigenvalue of matrix L1. On the basis of Remark 1, it can
be proved that

���Ż(t)
��� ≤ θ1,

���L−1
1 Z̈(t)

��� ≤ θ2,

where θ1, θ2 ∈ R denote known positive constants.

Lemma 4. If the control gains k and k2 satisfy the follow-
ing conditions

k2 −
���Ż(t)

��� > 0, (3.14)

a
√

(N −M)k2 − b

(���Ż(t)
���+

1

k

���L−1
1 Z̈(t)

���
)

> 0,

(3.15)

where a = min
i
{λi(L1)}, b = max

i
{λi(L1)} represent the

minimum and maximum eigenvalue of matrix L1. Then

h(t) = ηF (0)
T (k2sgn(ηF (0))− Ż(0))− φ(t) ≥ 0, (3.16)

where φ(t) is determined by

φ̇(t) = s(t)TL1(Ż(t)− k2sgn(ηF (t))).

Proof. Based on (3.13), φ(t) can be

φ(t) = (ηF (t)
T Ż(t)− ηF (0)

T Ż(0))

−(ηF (t)
T k2sgn(ηF (t))− ηF (0)

T k2sgn(ηF (0)))

+

∫ t

0

kL1ηF (τ)
T
(k2sgn(ηF (τ))− Ż(τ)− 1

k
L−1
1 Z̈(τ))dτ.

Define

Ψ(τ) = ∥L1ηF (τ)∥
(���Ż(τ)

���+
1

k

���L−1
1 Z̈(τ)

���
)

−k2ηF (τ)
TL1sgn(ηF (τ)).

It can be derived on account of ∥L1ηF (τ)∥ ≤ b ∥ηF (τ)∥
and ηF (τ)

TL1sgn(ηF (τ)) ≥ a
√

(N −M) ∥ηF (τ)∥ that

Ψ(τ) ≤ b ∥ηF (τ)∥
(���Ż(τ)

���+
1

k

���L−1
1 Z̈(τ)

���
)

−a
√

(N −M)k2 ∥ηF (τ)∥ .

Thus, if (3.14)-(3.15) hold, then

φ(t) ≤ ηF (0)
T k2sgn(ηF (0))− ηF (0)

T Ż(0),

which proved the validity of (3.16). This is the end of the
proof.

Inspired by the identifier-based robust control in previous
work Hu (2012), we can have the following theorem.

Theorem 1. The multi-agent system (2.1) with control
(3.3) achieves robust average formation tracking, if the
parameters satisfy the following conditions

k3 = 1, (3.17)

k2 − θ1 > 0, (3.18)

k2 −
b(kθ1 + θ2)

a
√
(N −M)k

> 0, (3.19)

kk1L1 − 2I < 0, (3.20)

2γkL1 − I > 0, (3.21)

where 0 < γ < β can be any constant scalar.

Proof. Define Λ(t) = [ηFx(t)
T ,ηF (t)

T , s(t)
T
,
√
φ(t)]T .

We use

V (t,Λ) =
1

2
ηFx(t)

T ηFx(t) +
1

2
ηF (t)

T ηF (t)

+
1

2
s(t)TL1s(t)+φ(t)
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as a Lyapunov function candidate. We take the time
derivative of V (t,Λ), it has

V̇ (t,Λ) = −βηFx(t)
T ηFx(t)− kηF (t)

TL1ηF (t)

−k1s(t)
TL2

1s(t) + kk1s(t)
TL2

1ηF (t) + γηFx(t)
T ηFx(t)

+
1

4γ
ηF (t)

T ηF (t)

≤ −(γ − β)ηFx(t)
T ηFx(t)− ηF (t)

T (
1

2
kL1−

1

4γ
I)ηF (t)

−1

2
k(ηF (t)−k1L1s(t))

TL1(ηF (t)−k1L1s(t))

−s(t)T k1L
2
1(I −

1

2
kk1L1)s(t).

(3.22)

If (3.17)-(3.21) are satisfied, subsequently we have V̇ (t,Λ) ≤
0.

Based on Remark 1, it can be easily obtained that

a∥s(t)∥2 ≤ s(t)
T
L1s(t) ≤ b∥s(t)∥2

by using Rayleigh-Ritz theorem. Therefore, W1(Λ) and
W2(Λ) that are positive definite can be found so that
W1(Λ) ≤ V (t,Λ) ≤ W2(Λ). Furthermore, according to
(3.22), there exist a positive semidefinite function W3(Λ)
defined as

W3(Λ) = (γ − β)ηFx(t)
T ηFx(t) + ηF (t)

T (
kL1

2
− 1

4γ
I)ηF (t)

+
1

2
k(ηF (t)−k1L1s(t))

TL1(ηF (t)−k1L1s(t))

+s(t)T k1L
2
1(I −

1

2
kk1L1)s(t),

such that V̇ (t,Λ) ≤ −W3(Λ). Based on Lemma 1, we can
arrive at a conclusion that when t → ∞, ηF (t) → 0.
Thus, it can be concluded from Lemma 3 that robust
average formation tracking is achieved for the multi-agent
system (2.1) in the presence of disturbance and unmodeled
dynamics. This is the end of the proof.

4. NUMERICAL SIMULATIONS

In this section, we consider a multi-agent system (2.1)
consisting of four followers and two leaders with n = 2.
The interaction topology of the agents team is shown in
Fig. 1. The damping gains α, disturbance and unmodeled
dynamics terms δi are given by

α = [−5, 0], δi =

[
sin(it) + 0.1xiX(t)
sin(it) + 0.1xiY (t)

]

Our control goal is to make the states of the four followers
to maintain a square formation while track the average
state of the leaders. The formation is defined as

di(t) =




0.2 cos(0.8t+
(i− 1)π

2
)

0.2 sin(0.8t+
(i− 1)π

2
)

−0.16 sin(0.8t+
(i− 1)π

2
)

0.16 cos(0.8t+
(i− 1)π

2
).



.

 



 



Fig. 1. Undirected interaction topology of the agents

-2 -1.5 -1 -0.5 0 0.5 1 1.5

x

-1.5

-1

-0.5

0

0.5

1

1.5

y

follower1
follower2
follower3
follower4
averageleader
leader1
leader2

Fig. 2. Trajectories within t=10s

0.6 0.7 0.8 0.9 1 1.1

x

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

y

follower1
follower2
follower3
follower4
averageleader
leader1
leader2

Fig. 3. Snapshots at t=10s

Then, lim
t→∞

6∑
i=1

di(t) = 0, therefore, the two leaders’ average

state will be at the centre of the square formation when
control objective is achieved.

The control gains are chosen as k = 4, k1 = 0.1, k2 = 12,
k3 = 1, β = 3, γ = 1.6, which satisfy the conditions in
Theorem 1.

The initial states of the agents are given by

Xix(0) = [−1.8, 0.8, 0.2,−0.2,−1.1,−0.9]T ,

XiY(0) = [0.9,−1.2, 0.6,−1,−0.1, 0.1]T ,

ViX(0) = [0, 0, 0, 0, 0, 0, ]T , ViY (0) = [0, 0, 0, 0, 1, 1, ]T .

Fig. 2 shows the trajectories of the six agents within
t = 10s, and Fig. 3 shows a snapshot at t = 10s. The
asterisk and triangle represent the initial and terminal
position of the followers distinguished by color. The initial
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and terminal position of the leaders are denoted by the
square and hexagram. In addition, the red trajectory and
the red hexagram represent the average position of the
two leaders. From Fig. 2 and Fig. 3, we can see that the
states of the four followers maintain a square formation,
and two leaders’ average state is at the centre of the square
formation. Thus, the control objective has been achieved.

5. CONCLUSION

This paper has studied the formation tracking problem
of the multi-agent system in the presence of disturbances
and unmodeled uncertainties. Only a subset of followers
are informed of the time-varying states of the multiple
leaders. An identifier-based robust control algorithm using
the neighboring relative information has been proposed to
ensure the states of the followers to maintain a predefined
time-varying formation and track the average state of
the leaders at the same time. Some sufficient conditions
for the second-order multi-agent system with multiple
leaders in the presence of disturbances and unmodeled
uncertainties have been proposed based on the graph
theory and the Lyapunov method. When the control gains
are selected appropriately, the control objective can be
achieved. Finally, the numerical simulations are provided
to testify the validity of the algorithm.
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