99 research outputs found

    Hyers-Ulam-Rassias Stability of Some Additive Fuzzy Set-Valued Functional Equations with the Fixed Point Alternative

    Get PDF
    Let Y be a real separable Banach space and let CY,d∞ be the subspace of all normal fuzzy convex and upper semicontinuous fuzzy sets of Y equipped with the supremum metric d∞. In this paper, we introduce several types of additive fuzzy set-valued functional equations in CY,d∞. Using the fixed point technique, we discuss the Hyers-Ulam-Rassias stability of three types additive fuzzy set-valued functional equations, that is, the generalized Cauchy type, the Jensen type, and the Cauchy-Jensen type additive fuzzy set-valued functional equations. Our results can be regarded as important extensions of stability results corresponding to single-valued functional equations and set-valued functional equations, respectively

    A Comparison of Linear ICA and Local Linear ICA for Mutual Information Based Feature Ranking

    Get PDF
    Abstract. Feature selection and dimensionality reduction is important for high dimensional signal processing and pattern recognition problems. Feature selection can be achieved by filter approach, in which certain criteria must be optimized. By using mutual information (MI) between feature vectors and class labels as the criterion, we proposed an ICA-MI framework for feature selection. In this paper, we will compare the linear ICA and local linear ICA for the accuracy of MI estimation, and study the bias-variance trade-off on feature projections and ranking

    A novel WebVR-Based lightweight framework for virtual visualization of blood vasculum

    Get PDF
    With the arrival of the Web 2.0 era and the rapid development of virtual reality (VR) technology in recent years, WebVR technology has emerged as the combination of Web 2.0 and VR. Moreover, the concept of “WebVR + medical science”is also proposed to advance medical applications. However, due to the limited storage space and low computing capability of Web browsers, it is difficult to achieve real-time rendering of large-scale medical vascular models on the Web, let alone large-scale vascular animation simulations. The framework proposed in this paper can achieve virtual display of the medical blood vasculum, including lightweight processing of the vasculum and virtual realization of blood flow. This innovative framework presents a simulation algorithm for the virtual blood path based on the Catmull-Rom spline. The mechanisms of progressive compression and online recovery of the lightweight vascular structure are further proposed. The experimental results show that our framework has a shorter browser-side response time than existing methods and achieves efficient real-time simulation

    A new framework for the integrative analytics of intravascular ultrasound and optical coherence tomography images

    Get PDF
    Abstract:The integrative analysis of multimodal medical images plays an important role in the diagnosis of coronary artery disease by providing additional comprehensive information that cannot be found in an individual source image. Intravascular ultrasound (IVUS) and optical coherence tomography (IV-OCT) are two imaging modalities that have been widely used in the medical practice for the assessment of arterial health and the detection of vascular lumen lesions. IV-OCT has a high resolution and poor penetration, while IVUS has a low resolution and high detection depth. This paper proposes a new approach for the fusion of intravascular ultrasound and optical coherence tomography pullbacks to significantly improve the use of those two types of medical images. It also presents a new two-phase multimodal fusion framework using a coarse-to-fine registration and a wavelet fusion method. In the coarse-registration process, we define a set of new feature points to match the IVUS image and IV-OCT image. Then, the improved quality image is obtained based on the integration of the mutual information of two types of images. Finally, the matched registered images are fused with an approach based on the new proposed wavelet algorithm. The experimental results demonstrate the performance of the proposed new approach for significantly enhancing both the precision and computational stability. The proposed approach is shown to be promising for providing additional information to enhance the diagnosis and enable a deeper understanding of atherosclerosis

    Elastically-Constrained Meta-Learner for Federated Learning

    Full text link
    Federated learning is an approach to collaboratively training machine learning models for multiple parties that prohibit data sharing. One of the challenges in federated learning is non-IID data between clients, as a single model can not fit the data distribution for all clients. Meta-learning, such as Per-FedAvg, is introduced to cope with the challenge. Meta-learning learns shared initial parameters for all clients. Each client employs gradient descent to adapt the initialization to local data distributions quickly to realize model personalization. However, due to non-convex loss function and randomness of sampling update, meta-learning approaches have unstable goals in local adaptation for the same client. This fluctuation in different adaptation directions hinders the convergence in meta-learning. To overcome this challenge, we use the historical local adapted model to restrict the direction of the inner loop and propose an elastic-constrained method. As a result, the current round inner loop keeps historical goals and adapts to better solutions. Experiments show our method boosts meta-learning convergence and improves personalization without additional calculation and communication. Our method achieved SOTA on all metrics in three public datasets.Comment: FL-IJCAI'2

    A New Dynamic Path Planning Approach for Unmanned Aerial Vehicles

    Get PDF
    Dynamic path planning is one of the key procedures for unmanned aerial vehicles (UAV) to successfully fulfill the diversified missions. In this paper, we propose a new algorithm for path planning based on ant colony optimization (ACO) and artificial potential field. In the proposed algorithm, both dynamic threats and static obstacles are taken into account to generate an artificial field representing the environment for collision free path planning. To enhance the path searching efficiency, a coordinate transformation is applied to move the origin of the map to the starting point of the path and in line with the source-destination direction. Cost functions are established to represent the dynamically changing threats, and the cost value is considered as a scalar value of mobile threats which are vectors actually. In the process of searching for an optimal moving direction for UAV, the cost values of path, mobile threats, and total cost are optimized using ant optimization algorithm. The experimental results demonstrated the performance of the new proposed algorithm, which showed that a smoother planning path with the lowest cost for UAVs can be obtained through our algorithm. (PDF) A New Dynamic Path Planning Approach for Unmanned Aerial Vehicles. Available from: https://www.researchgate.net/publication/328765418_A_New_Dynamic_Path_Planning_Approach_for_Unmanned_Aerial_Vehicles [accessed Nov 20 2018]

    A new pulse coupled neural network (PCNN) for brain medical image fusion empowered by shuffled frog leaping algorithm

    Get PDF
    Recent research has reported the application of image fusion technologies in medical images in a wide range of aspects, such as in the diagnosis of brain diseases, the detection of glioma and the diagnosis of Alzheimer’s disease. In our study, a new fusion method based on the combination of the shuffled frog leaping algorithm (SFLA) and the pulse coupled neural network (PCNN) is proposed for the fusion of SPECT and CT images to improve the quality of fused brain images. First, the intensity-hue-saturation (IHS) of a SPECT and CT image are decomposed using a non-subsampled contourlet transform (NSCT) independently, where both low-frequency and high-frequency images, using NSCT, are obtained. We then used the combined SFLA and PCNN to fuse the high-frequency sub-band images and low-frequency images. The SFLA is considered to optimize the PCNN network parameters. Finally, the fused image was produced from the reversed NSCT and reversed IHS transforms. We evaluated our algorithms against standard deviation (SD), mean gradient (Ḡ), spatial frequency (SF) and information entropy (E) using three different sets of brain images. The experimental results demonstrated the superior performance of the proposed fusion method to enhance both precision and spatial resolution significantly

    A hybrid active contour segmentation method for myocardial D-SPECT images

    Get PDF
    Ischaemic heart disease has become one of the leading causes of mortality worldwide. Dynamic single-photon emission computed tomography (D-SPECT) is an advanced routine diagnostic tool commonly used to validate myocardial function in patients suffering from various heart diseases. Accurate automatic localization and segmentation of myocardial regions is helpful in creating a three-dimensional myocardial model and assisting clinicians to perform assessments of myocardial function. Thus, image segmentation is a key technology in preclinical cardiac studies. Intensity inhomogeneity is one of the common challenges in image segmentation and is caused by image artefacts and instrument inaccuracy. In this paper, a novel region-based active contour model that can segment the myocardial D-SPECT image accurately is presented. First, a local region-based fitting image is defined based on information related to the intensity. Second, a likelihood fitting image energy function is built in a local region around each point in a given vector-valued image. Next, the level set method is used to present a global energy function with respect to the neighbourhood centre. The proposed approach guarantees precision and computational efficiency by combining the region-scalable fitting energy (RSF) model and local image fitting energy (LIF) model, and it can solve the issue of high sensitivity to initialization for myocardial D-SPECT segmentation
    corecore