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ABSTRACT Ischaemic heart disease has become one of the leading causes of mortality worldwide. Dynamic single-photon 

emission computed tomography (D-SPECT) is an advanced routine diagnostic tool commonly used to validate myocardial 

function in patients suffering from various heart diseases. Accurate automatic localization and segmentation of myocardial 

regions is helpful in creating a three-dimensional myocardial model and assisting clinicians to perform assessments of 

myocardial function. Thus, image segmentation is a key technology in preclinical cardiac studies. Intensity inhomogeneity is 

one of the common challenges in image segmentation and is caused by image artefacts and instrument inaccuracy. In this 

paper, a novel region-based active contour model that can segment the myocardial D-SPECT image accurately is presented. 

First, a local region-based fitting image is defined based on information related to the intensity. Second, a likelihood fitting 

image energy function is built in a local region around each point in a given vector-valued image. Next, the level set method 

is used to present a global energy function with respect to the neighbourhood centre. The proposed approach guarantees 

precision and computational efficiency by combining the region-scalable fitting energy (RSF) model and local image fitting 

energy (LIF) model, and it can solve the issue of high sensitivity to initialization for myocardial D-SPECT segmentation. 

 

INDEX TERMS Myocardium D-SPECT, Image segmentation, Active contour, Level set

I. INTRODUCTION 

According to [1], ischaemic heart disease is one of the 

leading causes of death in the world. Coronary macrovessel 

stenosis has long been considered the main cause of 

ischaemic heart disease. Additionally, coronary 

microvascular dysfunction (CMD) has been demonstrated 

to play an important role in the occurrence of myocardial 

ischaemia, resulting in major cardiovascular events or death. 

Early diagnosis and surgery are measures that can be used 

to address the health concerns mentioned above. Modern 

functional medical imaging techniques can contribute 

significantly to the diagnosis and, in particular, to the 

quantitative assessment of these diseases [2-3]. At present, 

various modalities are used in common preclinical cardiac 

diagnosis, such as single-photon emission computed 

tomography (SPECT) scans, positron emission tomography 

(PET) scans, magnetic resonance imaging (MRI), and X-

ray computed tomography (CT) [4-7]. Dynamic single-

photon emission computed tomography (D-SPECT), which 

has the capability of estimating extra kinetic information of 

tissue motion and deformation, is a popular routine 

diagnostic tool used to evaluate bodily functions affected 

by various diseases such as pulmonary embolism, 

pneumonia, heart failure, and tumours.  

D-SPECT, shown in Fig. 1, is a special myocardial 

perfusion imaging device using radionuclide as an imaging 

diagnostic method. By injecting radionuclide into the blood 
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stream, the blood perfusion and the functional state of heart 

can be observed via radionuclide myocardial perfusion 

imaging. Although myocardial perfusion imaging is not a 

novel technique for the diagnosis of myocardial ischaemia, 

it is the most reliable and non-invasive method for detecting 

coronary heart disease by imaging the ischaemia in the 

myocardium directly. Figure 2 shows examples of cardiac 

D-SPECT images, including a long-axis and short-axis 

image. D-SPECT has made considerable progress in 

imaging devices. Compared with the traditional SPECT of 

sodium iodide (NaI) crystal, the most advanced, fully 

digital zinc telluride (CZT) solid-state detector is used in D-

SPECT. In D-SPECT, the coronary flow reserve (CFR) is 

measured by the special treatment software for the heart. 

CFR can integrate the haemodynamic effects of the 

epicardial artery, the anterior arteriole, and the arteriole. 

Furthermore, a comprehensive assessment of the coronary 

and myocardium can be made, and a reliable basis for the 

preoperative evaluation and the evaluation of the 

postoperative curative effect can be provided. The 

fractional flow reserve (FFR) reflects the influence of the 

stenosis in an epicardial coronary on the haemodynamics, 

which has a guiding significance for the clinical profile. 

Moreover, the coronary flow reserve can provide the 

comprehensive information of both FFR and 

microangiopathy (IMR). In future, this detection method is 

likely to be used more often owing to its safe and reliable 

non-invasive examination capabilities, as well as high 

accuracy and sensitivity. In addition, D-SPECT can reduce 

unnecessary traumatic examination and the corresponding 

medical expenses for many patients.   

     
FIGURE 1. Images of D-SPECT. 

 

 
FIGURE 2. Cardiac D-SPECT images. (a) to (d) are short-axis images, and (e) to (h) are long-axis images. 

 
The myocardium is a three-dimensional structure, which 

cannot be directly visualized using two-dimensional images. 

With the improvement of temporal and spatial resolution of 

medical images, D-SPECT images contain substantial 

information, which makes image processing time-

consuming and labourious. Accurate automatic localization 

and segmentation of myocardial regions is helpful in 

establishing a three-dimensional myocardial model and 

assisting clinicians to perform an assessment of myocardial 

function. However, intensity inhomogeneity, which is 

caused by image artefacts and instrument inaccuracy, is one 

of the common issues in image segmentation. Since the 

introduction by Kass et al. [8], active contour models have 

become increasingly popular in the field of image 

segmentation in the past years and can yield closed and 

smooth contours of the desired objects with promising 

accuracy [9]. At present, a variety of active contour models 

have been proposed, such as the Chan-Vese (C-V) model, 

the geodesic active contour (GAC) model, the active 

contour model based on cross entropy (CEACM), the local 
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binary fitting (LBF) model, the region-scalable fitting 

energy (RSF) model, the local image fitting energy (LIF), 

and the hybrid model with global and local intensity fitting 

energy (LGIF) model [10-14]. In the C-V model, the global 

information related to the image, comprising the variances 

of the pixel greyscale values inside the object region and 

the background region, is used to guide the curve evolution 

[15]. However, the interference regions are not separated, 

which leads to unsatisfactory segmentation results. The 

global information gained by an edge detector function to 

drive the evolution of the curve is used in the GAC model. 

However, the complexity of edge information results in the 

non-convergence of the GAC model [16]. Compared with 

the C-V model, the CEACM model replaces the variances 

with the cross entropies of pixel greyscale values inside the 

object region and the background region to guide the curve 

evolution. This model can accurately segment images that 

are relatively homogeneous, although over-segmentation 

will occur if the images are less homogeneous. The LBF 

model, which utilizes the local image information as 

constraints, can segment objects with intensity 

inhomogeneities accurately [17-20]. The RSF model, a 

typical local model, chooses the Gaussian function as the 

kernel function to calculate the local intensity information. 

Nevertheless, the convolution is performed in each iteration 

during the curve evolution, causing massive computational 

cost. Unlike the RSF model, the convolution is performed 

before the iteration; thus, the segmentation results of the 

LIF model are relatively better. The LGIF model is a 

combination of the C-V model and RSF model, and a series 

of relatively good segmentation results can be obtained by 

the LGIF model. However, the computational complexity 

of hybrid models such as the LGIF model is fairly high. In 

addition, a heuristic process occurs because several 

parameters of the hybrid models must be set manually, 

which leads to increased work [21-23].  

In this study, we propose a new model combining the 

RSF model and LIF model. First, two local intensity fitting 

functions are defined through the intensity information and 

local regional differences, which can locally approximate 

the image intensities on the two sides of the contour in the 

neighbourhood of every pixel. Next, a likelihood fitting 

image energy functional is built in a local region around 

each point. Finally, the level set method is used to present a 

global energy functional with respect to the neighbourhood 

centre. The segmentation results are demonstrated by a 

series of contrasting experiments and a set of metrics, 

which are used to measure the accuracy of the novel model.  

The rest of the paper is organized as follows: Related 

work is introduced in Section Ⅱ. Our proposed method is 

described in Section Ⅲ. The experimental results and 

discussions are given in Section Ⅳ. Finally, we conclude 

this paper and discuss future work in Section Ⅴ.  

 
II. RELATED WORKS 

A. THE RSF MODEL 

Consider a vector valued image mapping d , where 
n is the image domain, and 1d is the dimension 

of a vector  xI . In particular, 1d indicates grey level 

images, while 3d defines colour images. C is defined as 

a contour in the image domain  [24]. In the RSF model, 

the local intensity fitting energy for a given point is defined 

by  
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where )(1 xf and )(2 xf are two fitting functions that locally 

approximate the intensity inside and outside the contour C , 

respectively. 
1 and 

2 are two positive constants, and 

 vK is a Gaussian kernel function. The total energy 

function is described as 
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where  is a level set, )(xH is the Heaviside function, and 

 and  are non-negative constants. 

The Heaviside function )(xH can be approximated by a 

smooth function )(xH
. It is defined by 
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and the derivative of 
H is defined as 
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For a fixed level set  , we minimize the energy functional 

in (2) with respect to )(1 xf and )(2 xf ,and easily obtain 
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Keeping )(1 xf and )(2 xf  
fixed and using the standard 

gradient descent method to minimize the energy function 

with respect to  , the gradient flow function can be 

obtained as shown below. 
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where div is the divergence operator, and 
1e and 

2e are 

functions defined as  
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The RSF model has the advantage of accurately 

segmenting the images with intensity inhomogeneity. 

However, the segmentation requires more iterations and 

consumes more time for a poor initial contour because the 

RSF model largely relies on the initialization of the contour. 

Moreover, the model is prone to fall into local minimum 

owing to the non-convexity of its energy function if the 

initial position of the contour is set far away from the actual 

boundary. 

 

B. THE LIF MODEL 

The LIF energy function is introduced by minimizing the 

difference between the fitted and original images [25][26].  
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where 
1m and 

2m are defined as follows: 
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where )(xWk
is a rectangular window function with standard 

deviation  . The function has a size of 14 k by 14 k , 

where k is the nearest integer to  . By using the calculus 

of variation and steepest descent method, )(LIFE can be 

minimized with respect to the corresponding gradient 

descent flow. 
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The LIF model is similar to the RSF model, in which the 

local intensity information is used to segment the image. 

Unlike the RSF model, for minimizing the energy function, 

image segmentation is achieved by minimizing the difference 

between the local fitted image and original image; thus, the 

LIF model is less sensitive to the settings of the initial 

contour.  

III. HYBRID ACTIVE CONTOUR SEGMENTATION 

In this section, we propose a hybrid method combining the 

RSF model and LIF model to improve the segmentation 

accuracy for D-SPECT images. 

 

A. ACTIVE CONTOURS WITH LOCAL IMAGE FITTING 
ENERGY 

The energy of each point x is mathematically given as 

below: 
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where K is a weighting function with a localization 

property that  vK decreases and approaches to zero as 

v increases. )(1 xf and )(2 xf are two numbers that fit image 

intensities near the point x .  yH is the Heaviside function. 

Meanwhile, the point is described as the centre point of the 

above integral, and the energy 
xE is defined as the local 

image fitting (LIF) energy. ))(),(,( 21 xfxfCE LIF

x
is used to 

represent (15) because the contour C , the centre point x , 

and two fitting values )(1 xf and )(2 xf influence the energy 

xE . 
xE and ),,( 21 ffCE LIF

x
is minimized by the numbers 

1f and 
2f , 

which vary with the centre point x . 

In our study, a Gaussian kernel is used to describe the 

weighting function )(xK , 
where 0 is a scale parameter.  
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The values of 
1f and 

2f are influenced apparently by the 

image intensities at the points y near the centre point x , 

because the weighting function )( yxK  takes larger 

values at the points y near the point x and decreases to 

zero as y goes away from x . By contrast, because 

)( yxK  approaches zero for a large distance yx  , the 

values of 
1f and 

2f are scarcely influenced by the image 

intensities at the points y  far away from the point x . The 

fitting energy in (15) is localized in the sense that the values 

1f and 
2f only fit the image intensities near each centre point 

x in the proposed model, owing to the spatially varying 

weighting function K with the above localization property. 

Moreover, when the fitting values 
1f and 

2f are chosen 

optimally and the contour C is exactly on the object 

boundary, the local fitting energy LIF

xE is minimized for each 

centre point x . 

However, LIF

xE  as defined above is local for a centre 

point x . LIF

xE is minimized for all the centre points x in 

the image domain   in order to find the entire object 

boundary. It can be achieved by minimizing the integral of 

all the centre points in the image domain  . The external 

energy that is computed from the image data is given by the 

equation 
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B. VARIATIONAL LEVEL SET FORMULATION OF THE 
MODEL 

In level set approaches, a contour C is represented by 

the zero level set of a Lipschitz function : . With 

the level set representation, the energy functional can be 

rewritten as 
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The distance regularizing term is added in order to ensure 

stable evolution of the level set function  .The deviation of 

the level set function  from a signed distance function is 

given as follows: 
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 The length of the zero level curve of  , 
which is used to 

regularize the zero level contour of  is expressed as 

follows: 
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The entire energy functional is then given by the following 

equation, where  and  are nonnegative constants. 
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To achieve good approximation of H and  by 
H and 

 , 

 is set to 1.0 in the equations (3) (4). The energy functions 
LIFE and L  are regularized as LIFE

and 
L by replacing 

H and  in (18) and (20) with 
H and 

 . Thus, the 

energy function can be approximated as 

        )22(,,,, 2121   LDffEffF LIF 

 

The energy function above is minimized to find the object 

boundary. 

  

 

C. GRADIENT DESCENT FLOW 

Keeping the level set function  fixed and minimizing the 

energy functional  21,, ffF 
with regard to functions 

)(1 xf and )(2 xf , )(1 xf and )(2 xf can be obtained through a 

partial derivative of x . 
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Because 0H and 01  H through the definition of 

H , the denominators in (23) and (24) are always positive. 

Next, the energy functional  21,, ffF 
is minimized with 

regard to a level set function  for fixed functions )(1 xf and 

)(2 xf . 
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The above equation (25) is the proposed model in our study. 

 

 

IV. RESULTS 

A. SUBJECTIVE EVALUATIONS OF EXPERIMENTAL 
RESULTS 
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FIGURE 3. A series of contrasting experiments on short-axis images. (a), (d), (g) and (j) are the original images. (b), (e), (h) and (k) are the segmentation 
results based on the RSF model, while (c), (f), (i) and (l) are the segmentation results based on our proposed model.  



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2855060, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

2 VOLUME XX, 2017 

 
 
FIGURE 4. A series of contrasting experiments on long-axis images. (a), (d), (g) and (j) are the original images. (b), (e), (h) and (k) are the segmentation 
results based on the RSF model, while (c), (f), (i) and (l) are the segmentation results based on our proposed model.  
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FIGURE 5. Evolution of contour curve of our proposed model. (a) to (d) respectively show the initial contour, 20 iterations, 100 iterations, and final 
contour of short-axis images. (e) to (h) respectively show the initial contour, 200 iterations, 400 iterations, and final contour of long-axis images.  

 
A series of segmentation results on short-axis and long-axis 

images based on the RSF model and our proposed model 

are shown in Fig. 3 and Fig. 4, respectively. It can be seen 

that the segmentation results based on our proposed model 

are more precise than those based on the RSF model, where 

fewer redundant segmentation results occur. Furthermore, 

the evolution of contour curve based on our proposed 

model is shown in Fig. 5. In Fig. 5, irrespective of whether 

the images are long-axis or short-axis images, the 

segmentation results become more accurate with the 

increase in the number of iterations. 

 

 

B. OBJECTIVE EVALUATIONS OF EXPERIMENTAL 
RESULTS 

A set of metrics is used to measure the accuracy of the 

proposed automatic method for segmentation, considering 

the manual segmentation as a reference. The measures are 

mathematically expressed as follows: 

a) Jaccard similarity coefficient (JS) 

)28(
MG

MG

SS

SS
JS






 

b) Dice similarity coefficient (DSC) 

)29(2
MG

MG

SS

SS
DSC






 

c) True positive rate (TPR) 

)30(
G
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S

SS
TPR


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d) False positive rate (FPR) 

)31(
G

MMG

S

SSS
FPR




 
where 

GS stands for the foreground of the ground truth 

image and 
MS indicates the foreground obtained by the 

models. 

 

 
TABLE I 

PERFORMANCE EVALUATIONS ON IMAGES OF LONG-AXIS MATTER SEGMENTATION QUALITY BETWEEN DIFFERENT METHODS 

Metric DSC JS TPR FPR 

Set 1 RSF 0.8835 0.8835 0.8835 0.8835 

Our model 0.8916 0.8916 0.8916 0.8916 

Set 2 RSF 0.8724 0.8724 0.8724 0.8724 

Our model 0.8804 0.8804 0.8804 0.8804 

Set 3 RSF 0.8879 0.8879 0.8879 0.8879 

Our model 0.8957 0.8957 0.8957 0.8957 
Set 4 RSF 0.8721 0.8721 0.8721 0.8721 

Our model 0.8765 0.8765 0.8765 0.8765 

Set 5 RSF 0.8906 0.8906 0.8906 0.8906 
Our model 0.8981 0.8981 0.8981 0.8981 

Set 6 RSF 0.7864 0.7864 0.7864 0.7864 
Our model 0.8233 0.8233 0.8233 0.8233 
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TABLE Ⅱ 

PERFORMANCE EVALUATIONS ON IMAGES OF SHORT-AXIS MATTER SEGMENTATION QUALITY BETWEEN DIFFERENT METHODS 

Metric 

Set 1 Set 2 Set 3 Set 4 Set 5 

RSF 

model 

Our 

model 

RSF 

model 

Our 

model 

RSF 

model 

Our 

model 

RSF 

model 

Our 

model 

RSF 

model 

Our 

model 

DSC 0.7436 0.7946 0.737 0.806 0.8471 0.8613 0.7924 0.8509 0.9378 0.9426 

JS 0.6294 0.6795 0.5929 0.677 0.7353 0.7567 0.675 0.741 0.8828 0.8915 

TPR 0.8425 0.8858 0.7377 0.8338 0.8663 0.8925 0.7766 0.8338 0.9339 0.9504 

FPR 0.1575 0.1142 0.2623 0.1662 0.1337 0.1075 0.2234 0.1662 0.0661 0.0496 

 

 

 
 
FIGURE 6. Evaluation of segmentation accuracy. 

 

Performance evaluations on long-axis and short-axis 

images are shown in Table Ⅰ and Table Ⅱ, respectively. It 

can be demonstrated that our model performs better than 

the RSF model does in DSC, JS, TPR, and FPR. 

The pixel values of segmentation regions are shown in 

Fig. 6, where manual segmentation and automatic 

segmentation are included. It can be seen that when the 

image layers range from 9 to 24, the pixel values of manual 

segmentation and automatic segmentation are 

approximately equal.  

 

V. CONCLUSION 

In this study, we proposed a new hybrid model for 

automatic myocardium D-SPECT images segmentation. In 

the model, two fitting functions are used to fit the grey level 

inside and outside the curve. The new model is robust on 

the initialization of the contour. A set of experiments 

demonstrate the accuracy of output segmentation results. 

The method solved the issues of image artefacts and 

inaccuracy of instruments, which can lead to intensity 

inhomogeneity in the image. In future, more local 

information of the image will be introduced into the energy 

functional of the proposed model to further improve the 

segmentation accuracy. In addition, the model will be 

implemented using narrow-band techniques to increase the 

computational speed.  
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