120 research outputs found

    Research on the interface properties of geogrid with different mesh sizes

    Get PDF
    Due to its special mesh structure, geogrid can be embedded in the surrounding soil so effectively that the effects of reinforcement are comparatively better the other geotechnical composite materials. Geogrid has been adopted more and more widely in steep embankment reinforcement engineering. In practical engineering, the design of a reinforced body of soil with geogrid is usually based on Finite Elemental Method (FEM) numerical methods and calculation is carried out as a two-dimensional plane strain problem. This simplifies the geogrid with mesh structure into a single strip. The plausibility of calculating the strength indexes of the interface through interface parameters without considering the influence of the mesh size of the geogrid on the features of the interface should be studied. The current research on the interface properties of geogrid with different mesh sizes does not examine this issue thoroughly. By using large-sized shear experiments and FEM numerical methods, this paper studies the influences of the mesh size of geogrid on interface properties. The influence of mesh size on the features of the interface with geogrid can be displayed directly and quantitatively. This shows that larger mesh sizes result in higher strength indexes of the interface and a clearer reinforcement effect. The corresponding requirements of the geogrid material also increase; otherwise, the tensile strength would not be satisfied. The research results provide effective guarantees for the construction and operation of steep embankment reinforcement engineering, which is meaningful for safety engineering

    In situ Observation of Sodium Dendrite Growth and Concurrent Mechanical Property Measurements Using an Environmental Transmission Electron Microscopy–Atomic Force Microscopy (ETEM-AFM) Platform

    Get PDF
    Akin to Li, Na deposits in a dendritic form to cause a short circuit in Na metal batteries. However, the growth mechanisms and related mechanical properties of Na dendrites remain largely unknown. Here we report real-time characterizations of Na dendrite growth with concurrent mechanical property measurements using an environmental transmission electron microscopy–atomic force microscopy (ETEM-AFM) platform. In situ electrochemical plating produces Na deposits stabilized with a thin Na2CO3 surface layer (referred to as Na dendrites). These Na dendrites have characteristic dimensions of a few hundred nanometers and exhibit different morphologies, including nanorods, polyhedral nanocrystals, and nanospheres. In situ mechanical measurements show that the compressive and tensile strengths of Na dendrites with a Na2CO3 surface layer vary from 36 to >203 MPa, which are much larger than those of bulk Na. In situ growth of Na dendrites under the combined overpotential and mechanical confinement can generate high stress in these Na deposits. These results provide new baseline data on the electrochemical and mechanical behavior of Na dendrites, which have implications for the development of Na metal batteries toward practical energy-storage applications

    In Situ Measurements of the Mechanical Properties of Electrochemically Deposited Li₂CO₃ and Li₂O Nanorods

    Get PDF
    Solid-electrolyte interface (SEI) is “the most important but least understood (component) in rechargeable Li-ion batteries”. The ideal SEI requires high elastic strength and can resist the penetration of a Li dendrite mechanically, which is vital for inhibiting the dendrite growth in lithium batteries. Even though Li2_{2}CO3_{3} and Li2_{2}O are identified as the major components of SEI, their mechanical properties are not well understood. Herein, SEI-related materials such as Li2_{2}CO3_{3} and Li2_{2}O were electrochemically deposited using an environmental transmission electron microscopy (ETEM), and their mechanical properties were assessed by in situ atomic force microscopy (AFM) and inverse finite element simulations. Both Li2_{2}CO3_{3} and Li2_{2}O exhibit nanocrystalline structures and good plasticity. The ultimate strength of Li2_{2}CO3_{3} ranges from 192 to 330 MPa, while that of Li2_{2}O is less than 100 MPa. These results provide a new understanding of the SEI and its related dendritic problems in lithium batteries

    Identification and characterization of mRNAs and lncRNAs in the uterus of polytocous and monotocous Small Tail Han sheep (Ovis aries)

    Get PDF
    Background Long non-coding RNAs (lncRNAs) regulate endometrial secretion and uterine volume. However, there is little research on the role of lncRNAs in the uterus of Small Tail Han sheep (FecB++). Herein, RNA-seq was used to comparatively analyze gene expression profiles of uterine tissue between polytocous and monotocous sheep (FecB++) in follicular and luteal phases. Methods To identify lncRNA and mRNA expressed in the uterus, the expression of lncRNA and mRNA in the uterus of Small Tail Han sheep (FecB++) from the polytocous group (n = 6) and the monotocous group (n = 6) using RNA-sequencing and real-time polymerase chain reaction (RT-PCR). Identification of differentially expressed lncRNAs and mRNAs were performed between the two groups and two phases . Gene ontology (GO) and pathway enrichment analyses were performed to analyze the biological functions and pathways for the differentially expressed mRNAs. LncRNA-mRNA co-expression network was constructed to further analyses the function of related genes. Results In the follicular phase, 473 lncRNAs and 166 mRNAs were differentially expressed in polytocous and monotocous sheep; in the luteal phase, 967 lncRNAs and 505 mRNAs were differentially expressed in polytocous and monotocous sheep. GO and KEGG enrichment analysis showed that the differentially expressed lncRNAs and their target genes are mainly involved in ovarian steroidogenesis, retinol metabolism, the oxytocin signaling pathway, steroid hormone biosynthesis, and the Foxo signaling pathway. Key lncRNAs may regulate reproduction by regulating genes involved in these signaling pathways and biological processes. Specifically, UGT1A1, LHB, TGFB1, TAB1, and RHOA, which are targeted by MSTRG.134747, MSTRG.82376, MSTRG.134749, MSTRG.134751, and MSTRG.134746, may play key regulatory roles. These results offer insight into molecular mechanisms underlying sheep prolificacy

    5G Internet of Things: A survey

    Get PDF
    © 2018 The existing 4G networks have been widely used in the Internet of Things (IoT) and is continuously evolving to match the needs of the future Internet of Things (IoT) applications. The 5G networks are expected to massive expand today's IoT that can boost cellular operations, IoT security, and network challenges and driving the Internet future to the edge. The existing IoT solutions are facing a number of challenges such as large number of connection of nodes, security, and new standards. This paper reviews the current research state-of-the-art of 5G IoT, key enabling technologies, and main research trends and challenges in 5G IoT

    Non-digestible polysaccharides to support the intestinal immune barrier: in vitro models to unravel molecular mechanisms

    No full text
    Non-digestible polysaccharides (NDPs) are considered as important ingredients to support health. Among these health effects, immunomodulatory effects raised interests in the past decade. The intestine is the primary organ that interact with NDPs. The intestinal epithelial cells (IECs) form a dynamic physical barrier and together with associated immune cells determine for a large part our immune homeostasis. Studying the direct interaction between NDPs and intestinal and immune cells could help us to uncover the mechanism by which NDPs exert immunomodulatory effects and how NDPs can differ in this activity. In this thesis, we investigated the immunomodulatory effects of NDPs through interaction with intestinal immune cells using in vitro methods in order to characterise the NDPs and preselect NDPs with differential activity for further in vivo evaluations. The intestinal immune barrier is formed by various IECs and immune cells, which are introduced and their specific functions discussed in Chapter 1. NDPs could interact directly with both IECs and immune cells that sample in or from the lumen. The majority of IECs are enterocytes and most relevant immune cells responsible for sampling in the lumen have been characterised as macrophages, which leads us to focus on these cell types by in vitro approaches. In addition, basic information on NDPs and current status on health effects of NDPs both in vitro and in vivo are discussed. In Chapter 2, the direct response of IEC to NDPs stimulation was investigated. IECs form the largest surface of the body that, with a crucial role as barrier also, perform a role in signalling towards immune cells. We used 21-day transwell cultured Caco-2 to resemble the small intestinal enterocytes that form largest part of this intestinal layer. We first characterized the chemical composition of five NDPs which revealed different mono sugar composition, linkages of backbone and side chains and a wide range of MW (from 17 KDa to 2100 KDa). The NDPs could reduce translocation of FITC-Dextran of 4 kDa across the epithelial layer, potentially through physical interference. Gene expression analysis indicated the induction of unique gene expression characteristics in Caco-2 cells upon exposure to different NDPs. An arabinoxylan preparation from wheat and a lentinan-containing extract from shiitake mushrooms showed upregulation of gene expression of the NF-κB family and chemokines CCL20 and CXCL10. Besides these immune related changes by some NDPs, we also observed changes in receptor expression (like TLR2, CD14 and GPCRs) and other pathways, amongst which the cholesterol biosynthesis pathway. Macrophages, as the resident population of immune cells penetrating between or associating with close contact with the IECs, are generally classified as inflammatory (M1) or as tolerant (M2) macrophages. In Chapter 3, we set up a macrophage differentiation method based on primary blood cells and selected and validated M1 and M2 specific gene expression markers. Next, we analysed the effect when macrophages are exposed to NDPs and compared the resulting macrophages with M1 and M2 macrophages. Based on M1 and M2 markers we identified an alternative subset that we named MNDP. This MNDP was further studied by microarray analysis and revealed a commonly modulated set of genes, involved in migration, metabolic processes, cell cycle, and inflammatory immune function. In Chapter 4, we further functionally characterize these MNDP in comparison to M1 and M2 macrophages based on a set of functional assays. NDP-treated macrophages showed no IDO activity and showed an inhibited antigen uptake and processing capacity compared to M1 and M2 macrophages. Also their phagocytic capacity was reduced compared to both M1 and M2 macrophages. Furthermore, the alternative expression pattern for NDP-treated macrophages, as demonstrated by gene expression, was confirmed by protein measurements. The signature mix of the chemokines CCL1, CCL5, CCL20, CCL24, CXCL8, and IL1β secreted by MNDP, and in particular when macrophages were treated with Naxus, was shown to induce a recruitment of monocytes. As macrophage plasticity could be essential for intestinal immune homeostasis, resolving activity of inflammatory responses upon a challenge is important. Besides, redirecting differentiation and function of tolerant macrophages can also be beneficial to the intestinal immune status. In Chapter 5, we analysed plasticity of M1 and M2 macrophages to NDPs exposure. Macrophage plasticity was demonstrated as M1 and M2 could be skewed to an alternative subset indicated by a dedicated set of gene expression markers, selected to characterize M1, M2 and MNDP macrophages. In addition, phagocytosis and antigen processing capacity of both M1 and M2 were decreased by the NDP Naxus. Besides, Naxus could change the secretion of cytokines by macrophages that previously were differentiated towards M1 and M2. For M2, this resulted in an increase of recruitment of monocytes by M2 macrophages. In Chapter 6, we discussed the important findings in each chapter of this thesis together with current literature, and gave a general perspective on this research line focussing on the immunomodulating activity of NDPs and the direction for future research. We suggested NDPs in terms of Naxus as candidate for guiding investigations in ex vivo and in vivo studies for immunomodulation of intestinal disease.</p

    Alone Together

    No full text
    We present Alone Together, an interactive online ball playing environment augmented with three sets of Kinects. The play environment attempts to simplify the real world ball-passing exercise (or rehabilitation sessions) except that the players can be miles away from each other, and they interact without a physical ball. Kinects are used to map players\u27 action into a virtual world including the passing of the virtual ball. A small-scale experiment shows inexperienced players\u27 acceptance over such virtual setting compared to the physical ball-passing game within a short playing duration

    A comparative study of applying low-latency smoothing filters in a multi-kinect virtual play environment

    No full text
    The Skeleton Tracking System in Kinect is known for being noisy and unstable, hence, in practice, a noise reduction filter or smoothing filter needs to be employed before consuming the data in order to obtain smooth joint position data over time. In this paper, we present a comparative study on applying four different smoothing filters (Simple Moving Average Smoothing, Savitzky–Golay filter, Exponential filter, and Double Exponential filter) in “Alone Together” (Tang et al. 2015), a virtual play environment augmented with multiple sets of Kinects. Overall, among the four filters, the Exponential Smoothing Filter yields the best results in the game. The comparative study only provides quantitative observations on the four smoothing filters, the qualitative examination in terms of player satisfaction remains unclear, which is one of our immediate future research paths in this direction
    corecore