80 research outputs found

    Recent advances on fluid flow in porous media using digital core analysis technology

    Get PDF
    The scientific and engineering challenges of research on porous media have gained substantial attention in recent decades. These intricate issues span different disciplines and fields, manifesting in natural and industrial systems like soils, oil and gas reservoirs, tissues, plants, etc. Meanwhile, digital core analysis technology has rapidly developed, proving invaluable not just in oil and gas reservoirs development, but also in geothermal energy, carbon and hydrogen storage. The China InterPore Chapter and the Research Center of Multiphase Flow in Porous Media at China University of Petroleum (East China) have established a conference platform for global scholars to exchange ideas and research in porous media utilizing digital core analysis technology. The 6th International Conference on Digital Core Analysis & the 2023 China Interpore Conference on Porous Media was successfully held in Qingdao from July 5 to 7, 2023. The conference facilitated discussions among 150 participants, including over 20 invited experts from academia and industry, and the recent advances in research of fluid flow in porous media using digital core analysis technology were thoroughly presented.Document Type: EditorialCited as: Yang, Y., Horne, R. N., Cai, J., Yao, J. Recent advances on fluid flow in porous media using digital core analysis technology. Advances in Geo-Energy Research, 2023, 9(2): 71-75. https://doi.org/10.46690/ager.2023.08.0

    Advances in multiscale numerical and experimental approaches for multiphysics problems in porous media

    Get PDF
    Research on the scientific and engineering problems of porous media has drawn increasing attention in recent years. Digital core analysis technology has been rapidly developed in many fields, such as hydrocarbon exploration and development, hydrology, medicine, materials and subsurface geofluids. In summary, science and engineering research in porous media is a complex problem involving multiple fields. In order to encourage communication and collaboration in porous media research using digital core technology in different industries, the 5th International Conference on Digital Core Analysis & the Workshop on Multiscale Numerical and Experimental Approaches for Multiphysics Problems in Porous Media was held in Qingdao from April 18 to 20, 2021. The workshop was jointly organized by the China InterPore Chapter, the Research Center of Multiphase Flow in Porous Media at the China University of Petroleum (East China) and the University of Aberdeen with financial support from the National Sciences Foundation of China and the British Council. Due to the current pandemic, a hybrid meeting was held (participants in China met in Qingdao, while other participants joined the meeting online), attracting more than 150 participants from around the world, and the latest multi-scale simulation and experimental methods to study multi-field coupling problems in complex porous media were presented.Cited as: Yang, Y., Zhou, Y., Blunt, M. J., Yao, J., Cai, J. Advances in multiscale numerical and experimental approaches for multiphysics problems in porous media. Advances in Geo-Energy Research, 2021, 5(3): 233-238, doi: 10.46690/ager.2021.03.0

    Llam-Mdcnet for Detecting Remote Sensing Images of Dead Tree Clusters

    Get PDF
    Clusters of dead trees are forest fires-prone. To maintain ecological balance and realize its protection, timely detection of dead trees in forest remote sensing images using existing computer vision methods is of great significance. Remote sensing images captured by Unmanned aerial vehicles (UAVs) typically have several issues, e.g., mixed distribution of adjacent but different tree classes, interference of redundant information, and high differences in scales of dead tree clusters, making the detection of dead tree clusters much more challenging. Therefore, based on the Multipath dense composite network (MDCN), an object detection method called LLAM-MDCNet is proposed in this paper. First, a feature extraction network called Multipath dense composite network is designed. The network\u27s multipath structure can substantially increase the extraction of underlying and semantic features to enhance its extraction capability for rich-information regions. Following that, in the row, column, and diagonal directions, the Longitude Latitude Attention Mechanism (LLAM) is presented and incorporated into the feature extraction network. The multi-directional LLAM facilitates the suppression of irrelevant and redundant information and improves the representation of high-level semantic feature information. Lastly, an AugFPN is employed for down-sampling, yielding a more comprehensive representation of image features with the combination of low-level texture features and high-level semantic information. Consequently, the network\u27s detection effect for dead tree cluster targets with high-scale differences is improved. Furthermore, we make the collected high-quality aerial dead tree cluster dataset containing 19,517 images shot by drones publicly available for other researchers to improve the work in this paper. Our proposed method achieved 87.25% mAP with an FPS of 66 on our dataset, demonstrating the effectiveness of the LLAM-MDCNet for detecting dead tree cluster targets in forest remote sensing images

    蛋白质多肽氨基端乙酰化酶NatB介导底物特异性乙酰化反应的分子基础

    Get PDF
    文章简介蛋白质多肽氨基端乙酰化(N-terminal acetylation)发生在蛋白质或多肽的氨基端第一个氨基酸的(N端)α氨基上,是真核生物中一种最常见的蛋白质翻译后修饰方式。该修饰是由6类N端乙酰转移酶(NAT)来完成的(Nat A至Nat F),而每一种都只作用于其特异的蛋白国家自然科学基金委;;科技部的经费支

    Structure of p300 bound to MEF2 on DNA reveals a mechanism of enhanceosome assembly

    Get PDF
    Transcription co-activators CBP and p300 are recruited by sequence-specific transcription factors to specific genomic loci to control gene expression. A highly conserved domain in CBP/p300, the TAZ2 domain, mediates direct interaction with a variety of transcription factors including the myocyte enhancer factor 2 (MEF2). Here we report the crystal structure of a ternary complex of the p300 TAZ2 domain bound to MEF2 on DNA at 2.2Å resolution. The structure reveals three MEF2:DNA complexes binding to different sites of the TAZ2 domain. Using structure-guided mutations and a mammalian two-hybrid assay, we show that all three interfaces contribute to the binding of MEF2 to p300, suggesting that p300 may use one of the three interfaces to interact with MEF2 in different cellular contexts and that one p300 can bind three MEF2:DNA complexes simultaneously. These studies, together with previously characterized TAZ2 complexes bound to different transcription factors, demonstrate the potency and versatility of TAZ2 in protein–protein interactions. Our results also support a model wherein p300 promotes the assembly of a higher-order enhanceosome by simultaneous interactions with multiple DNA-bound transcription factors

    HIV-1 Entry and Membrane Fusion Inhibitors

    No full text
    HIV-1 (human immunodeficiency virus type 1) infection begins with the attachment of the virion to a host cell by its envelope glycoprotein (Env), which subsequently induces fusion of viral and cell membranes to allow viral entry. Upon binding to primary receptor CD4 and coreceptor (e.g., chemokine receptor CCR5 or CXCR4), Env undergoes large conformational changes and unleashes its fusogenic potential to drive the membrane fusion. The structural biology of HIV-1 Env and its complexes with the cellular receptors not only has advanced our knowledge of the molecular mechanism of how HIV-1 enters the host cells but also provided a structural basis for the rational design of fusion inhibitors as potential antiviral therapeutics. In this review, we summarize our latest understanding of the HIV-1 membrane fusion process and discuss related therapeutic strategies to block viral entry

    Lipid metabolism and tumor immunotherapy

    Get PDF
    In recent years, the relationship between lipid metabolism and tumour immunotherapy has been thoroughly investigated. An increasing number of studies have shown that abnormal gene expression and ectopic levels of metabolites related to fatty acid synthesis or fatty acid oxidation affect tumour metastasis, recurrence, and drug resistance. Tumour immunotherapy that aims to promote an antitumour immune response has greatly improved the outcomes for tumour patients. However, lipid metabolism reprogramming in tumour cells or tumour microenvironment-infiltrating immune cells can influence the antitumour response of immune cells and induce tumor cell immune evasion. The recent increase in the prevalence of obesity-related cancers has drawn attention to the fact that obesity increases fatty acid oxidation in cancer cells and suppresses the activation of immune cells, thereby weakening antitumour immunity. This article reviews the changes in lipid metabolism in cells in the tumour microenvironment and describes the relationship between lipid metabolism reprogramming in multiple cell types and tumour immunotherapy
    corecore