137 research outputs found
MiR-624-5p enhances cell resistance against cisplatin via PDGFRA/Stat3/PI3K axis in ovarian cancer
Purpose: The purpose of this study was to evaluate the role of miR-624-5p in ovarian cancer.Methods: MiR-624-5p expression in ovarian cancer {OC) cell lines and normal cells (NCs) was evaluated and compared the differential miR-624-5p in OC A2780 cells and cisplatin-resistant OC cell line (A2780/DDP). CCK-8 was used to evaluate changes in cell viability of the A2780 and A2780/DDP cell lines as well as silenced miR-624-5p. Western Blot examined the Stat3 and phosphorylated Pi3k. The binding between PDGFRA and miR-624-5p was predicted on Targetscan and verified through Luciferase Reporter Assay. The role of PDGFRA in A2780/DDP by overexpressing PDGFRA was evaluated by RT-qPCR and CCK-8 assays. RT-qPCR assay also measured miR-624-5p expression responsive to different dosages of cisplatin and CCK8 examined viability levels correspondingly. In addition, the interplay of PDGFRA and miR-624-5p by combined downregulation of both miR-624-5pand PDGFRA were evaluated.Results: OC cells had higher miR-624-5p expression than NCs but lower compared to cisplatinresistant A2780/DDP cells. A2780/DDP cells had higher viability than OC cell line A2780. Stat3 and phosphorylated PI3K were activated in A2780/DDP cells. Silencing miR-624-5p led to lower viability inA2780/DDP cells. miR-624-5p expression dropped as the cisplatin concentration increased, resulting in decreasing viability respectively. Luciferase Reporter assay validated the binding of miR-624-5p and PDGFRA in A2780/DDP cells. Overexpressed PDGFRA induced lower cell viability in A2780/DDP cells. Downregulation of PDGFRA partially restored the lowered viability and inhibited Stat3 as well as phosphorylated Pi3k induced by miR-624-5p inhibitor.Conclusion: MiR-624-5p could add to the cellular resistance to cisplatin in OC in-vitro model, which indicated that it might help unveil the mystery of drug-resistance in clinical stage of ovarian cancer.
Keywords: MiR-624-5p, resistance, cisplatin, PDGFRA/Stat3/PI3K, ovarian cance
miRNA-223 expression in patient-derived eutopic and ectopic endometrial stromal cells and its effect on epithelial-to-mesenchymal transition in endometriosis
Objective: This study was designed to evaluate the expression of microRNA-223 (miRNA-223) in patient-derived eutopic and ectopic endometrial stromal cells (SCs). Given the fact that miRNA-223 was previously shown to be upregulated in these cells and that this upregulation has been linked to epithelial-to-mesenchymal transition (EMT) during endometriosis, this study aimed to further explore the expression of miRNA-223, its effect in endometriosis, and the mechanisms underlying its effects.
Methods: Endometrial tissue was collected from 26 patients with endometriosis and 14 patients with hysteromyoma (control group). Primary endometrial SCs were isolated and cultured from several endometrial samples and miRNA-223 expression was evaluated using qRT-PCR. Cells were then transfected with a miRNA-223 overexpression lentiviral vector (sh-miR-223 cells) or an empty control (sh-NC cells) and then used to monitor the effects of miRNA-223 on the expression of several EMT-associated proteins, including N-cadherin, vimentin, and Slug, using western blot. Cellular migration, invasion, and proliferation were then evaluated using a wound healing, Transwell, and CCK-8 assay, respectively. Flow cytometry was used to detect apoptosis.
Results: There was a significant decrease in the expression of miRNA-223 in both eutopic and ectopic endometrial SCs (p < 0.05) whereas upregulation of miRNA-223 inhibited the expression of EMT-related molecules and reduced cell migration, invasion, and proliferation. High levels of miRNA-223 also promoted apoptosis.
Conclusion: miRNA-223 expression decreased in endometrial SCs from endometriosis patients, which may facilitate the differential regulation of EMT during endometriosis.
Clinical Trial registration number: SWYX2020-211
Simulation of the Signal Propagation for Thin-gap RPC in the ATLAS Phase-II Upgrade
Thin-gap Resistive Plate Chambers (RPCs) with a 1 mm gap size are introduced
in the Phase-II ATLAS upgrade. Smaller avalanche charge due to the reduced gap
size raises concerns for signal integrity. This work focuses on the RPC signal
propagation process in lossless conditions, and an analytical study is
implemented for the ATLAS RPC. Detector modeling is presented, and the
simulation of the RPC signal is discussed in detail. Simulated characteristic
impedance and crosstalk have been compared with the measured value to validate
this model. This method is applied to different RPC design geometries,
including the newly proposed readout scheme.Comment: 6 pages, 5 figures, submitted to NIM
Oral peripheral ameloblastoma : a retrospective series study of 25 cases
Peripheral ameloblastoma (PA) is a rare and unusual variant of odontogenic tumor, which was described only in isolated case reports in literature. The objective of this study was to investigate the clinical profile, treatment and outcome of PA in a consecutive case series. A total of 25 patients with histologically confirmed PA from 2001 to 2015 were retrospectively reviewed in our institution. Of the 25 patients, 22 males and 3 females were identified (male: female = 7.3:1). The average age was 48.3 years (range 11-81 years) with lingual or palate gingival region being the most common site (76%). The course of disease was less than 6 months in 92.0% (23/25) of all patients (mean, 3.3 months; range, 1-12 months). All patients underwent complete surgical removal of the lesions, and one lesion recurrence occurred during the follow-up period. The clinical profile and outcome of PA from Eastern China were elucidated in this retrospective analysis based on a case series. Our experience may provide some insights into the differential diagnosis and clinical management of PA. The first choice of treatment is surgical excision, which can result in a good prognosis
How Does Continuous Renal Replacement Therapy Affect Septic Acute Kidney Injury?
Sepsis is the leading cause of acute kidney injury (AKI) in the intensive care unit. As the most common treatment of septic AKI, it is believed that continuous renal replacement therapy (CRRT) can not only maintain the water balance and excrete the metabolic products but also regulate the inflammation and promote kidney recovery. CRRT can remove the inflammatory cytokines to regulate the metabolic adaption in kidney and restore the kidney recovery to protect the kidney in septic AKI. Second, CRRT can provide extra energy supply in septic AKI to improve the kidney energy balance in septic AKI. Third, the anticoagulant used in CRRT also regulates the inflammation in septic AKI. CRRT is not only a treatment to deal with the water balance and metabolic products, but also a method to regulate the inflammation in septic AKI. Video Journal Club 'Cappuccino with Claudio Ronco' at https://www.karger.com/Journal/ArticleNews/223997?sponsor=52
Analysis of pig serum proteins based on shotgun liquid chromatography-tandem mass spectrometry
Recent advances in proteomics technologies have opened up significant opportunities for future applications. We used shotgun liquid chromatography, coupled with tandem mass spectrometry (LC-MS/MS) to determine the proteome profile of healthy pig serum. Samples of venous blood were collected and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis separation and in-gel trypsin digestion. The peptides were then processed using shotgun LC-MS/MS. Serum proteins were subjected to protein identification and bioinformatics analysis. A total of 392 proteins were identified, and 179 were annotated according to their molecular functions and biological processes, excluding 142 hypothetical proteins and 71 immune globulins. To the best of our knowledge, this represents the first porcine serum proteomics analysis based on shotgun LC-MS/MS. This method and the resulting proteomics information may prove valuable for ensuring good animal welfare practice and for monitoring swine health and disease status.Keywords: Analysis, pig serum, shotgun coupled with tandem mass spectrometry (LC-MS/MS
Enhancing the 3D printing fidelity of vat photopolymerization with machine learning-driven boundary prediction
Like many pixel-based additive manufacturing (AM) techniques, digital light processing (DLP) based vat pho-topolymerization faces the challenge that the square pixel based processing strategy can lead to zigzag edges especially when feature sizes come close to single-pixel levels. Introducing greyscale pixels has been a strategy to smoothen such edges, but it is a challenging task to understand which of the many permutations of projected pix-els would give the optimal 3D printing performance. To address this challenge, a novel data acquisition strategy based on machine learning (ML) principles is proposed, and a training routine is implemented to reproduce the smallest shape of an intended 3D printed object. Through this approach, a chessboard patterning strategy is developed along with an automated data refining and augmentation workflow, demonstrating its efficiency and effectiveness by reducing the deviation by around 30%
Interface induced Zeeman-protected superconductivity in ultrathin crystalline lead films
Two dimensional (2D) superconducting systems are of great importance to
exploring exotic quantum physics. Recent development of fabrication techniques
stimulates the studies of high quality single crystalline 2D superconductors,
where intrinsic properties give rise to unprecedented physical phenomena. Here
we report the observation of Zeeman-type spin-orbit interaction protected
superconductivity (Zeeman-protected superconductivity) in 4 monolayer (ML) to 6
ML crystalline Pb films grown on striped incommensurate (SIC) Pb layers on
Si(111) substrates by molecular beam epitaxy (MBE). Anomalous large in-plane
critical field far beyond the Pauli limit is detected, which can be attributed
to the Zeeman-protected superconductivity due to the in-plane inversion
symmetry breaking at the interface. Our work demonstrates that in
superconducting heterostructures the interface can induce Zeeman-type
spin-orbit interaction (SOI) and modulate the superconductivity
- …