1,323 research outputs found

    Distributed Utilization Control for Real-time Clusters with Load Balancing

    Get PDF
    Recent years have seen rapid growth of online services that rely on large-scale server clusters to handle high volume of requests. Such clusters must adaptively control the CPU utilizations of many processors in order to maintain desired soft real-time performance and prevent system overload in face of unpredictable workloads. This paper presents DUC-LB, a novel distributed utilization control algorithm for cluster-based soft real-time applications. Compared to earlier works on utilization control, a distinguishing feature of DUC-LB is its capability to handle system dynamics caused by load balancing, which is a common and essential component of most clusters today. Simulation results and control-theoretic analysis demonstrate that DUC-LB can provide robust utilization control and effective load balancing in large-scale clusters

    The R Coronae Borealis stars - carbon abundances from forbidden carbon lines

    Full text link
    Spectra of several R Coronae Borealis (RCB) stars at maximum light were examined for the [C I] 9850 A and 8727 A absorption lines. The 9850 A line is variously blended with a Fe II and CN lines but positive identifications of the [C I] line are made for R CrB and SU Tau. The 8727 A line is detected in the spectrum of the five stars observed in this wavelength region. Carbon abundances are derived from the [C I] lines using the model atmospheres and atmospheric parameters used by Asplund et al. (2000). Although the observed strength of a C I line is constant from cool to hot RCB stars, the strength is weaker than predicted by an amount equivalent to a factor of four reduction of a line's gf-value. Asplund et al. dubbed this 'the carbon problem' and discussed possible solutions. The [C I] 9850 A line seen clearly in R CrB and SU Tau confirms the magnitude of the carbon problem revealed by the C I lines. The [C I] 8727 A line measured in five stars shows an enhanced carbon problem. The gf-value required to fit the observed [C I] 8727 A line is a factor of 15 less than the well-determined theoretical gf-value. We suggest that the carbon problem for all lines may be alleviated to some extent by a chromospheric-like temperature rise in these stars. The rise far exceeds that predicted by our non-LTE calculations, and requires a substantial deposition of mechanical energy.Comment: 11 pages (embedded 5 figures and 3 tables), accepted for publication in MNRA

    Mixed-State Quasiparticle Spectrum for d-wave Superconductors

    Full text link
    Controversy concerning the pairing symmetry of high-TcT_c materials has motivated an interest in those measurable properties of superconductors for which qualitative differences exist between the s-wave and d-wave cases. We report on a comparison between the microscopic electronic properties of d-wave and s-wave superconductors in the mixed state. Our study is based on self-consistent numerical solutions of the mean-field Bogoliubov-de Gennes equations for phenomenological BCS models which have s-wave and d-wave condensates in the absence of a magnetic field. We discuss differences between the s-wave and the d-wave local density-of-states, both near and away from vortex cores. Experimental implications for both scanning-tunneling-microscopy measurements and specific heat measurements are discussed.Comment: 10 pages, REVTEX3.0, 3 figures available upon reques

    Incommensurate Charge and Spin Fluctuations in d-wave Superconductors

    Full text link
    We show analytic results for the irreducible charge and spin susceptibilities, χ0(ω,Q)\chi_0 (\omega, {\bf Q}), where Q{\bf Q} is the momentum transfer between the nodes in d-wave superconductors. Using the BCS theory and a circular Fermi surface, we find that the singular behavior of the irreducible charge susceptibility leads to the dynamic incommensurate charge collective modes. The peaks in the charge structure factor occur at a set of wave vectors which form an ellipse around Qπ=(π,π){\bf Q}_{\pi}=(\pi,\pi) and Q0=(0,0){\bf Q}_0=(0,0) in momentum space with momentum dependent spectral weight. It is also found that, due to the non-singular irreducible spin susceptibility, an extremely strong interaction via random phase approximation is required to support the magnetic peaks near Qπ{\bf Q}_{\pi}. Under certain conditions, the peaks in the magnetic structure factor occur near Q=(π,π(1±Ύ)){\bf Q}=(\pi,\pi (1 \pm \delta)) and (π(1±Ύ),π)(\pi (1 \pm \delta),\pi).Comment: 5 pages, 3 figure

    Data Visualization on Global Trends on Cancer Incidence An Application of IBM Watson Analytics

    Get PDF
    Visual analytics is widely used to explore data patterns and trends. This work leverages cancer data collected by World Health Organization (WHO) across over a hundred of cancer registries worldwide. In this study, we present a visual analytics platform, IBM Watson Analytics, to explore the patterns of global cancer incidence. We included 26 cancers from different geographic regions. An interactive interface was applied to plot a choropleth map to show global cancer distribution, and line charts to demonstrate historical cancer trends over 29 years. Subgroup analyses were conducted for different age groups. With real-time interactive features, we can easily explore the data with a selection of any cancer type, gender, age group, or geographical region. This platform is running on the cloud, so it can handle data in huge volumes, and is assessable by any computer connected to the Internet

    The Structure of a Vortex in the t-J Model

    Full text link
    We study the single-vortex solution of the t-J model within resonating-valence-bond (RVB) mean-field theory. We find two types of vortex cores, insulating and metallic, depending on the parameters of the model. The pairing order parameter near both cores have dx2−y2+iηdxyd_{x^2 -y^2}+i\eta d_{xy} symmetry. For some range of t/Jt/J the calculated tunneling spectrum of the metallic vortex core agrees qualitatively with the STM tunneling data for BSCCO

    Reduction of the Superfluid Density in the Vortex-Liquid Phase of Bi2Sr2CaCu2Oy

    Full text link
    In-plane complex surface impedance of a Bi2Sr2CaCu2Oy single crystal was measured in the mixed state at 40.8 GHz.The surface reactance, which is proportional to the real part of the effective penetration depth, increased rapidly just above the first-order vortex-lattice melting transition field and the second magnetization peak field.This increase is ascribed to the decrease in the superfluid density rather than the loss of pinning.This result indicates that the vortex melting transition changes the electronic structure as well as the vortex structure.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Preparation and characteristics of the sulfonated chitosan derivatives electrodeposited onto 316l stainless steel surface

    Get PDF
    In order to ameliorate the properties of corrosion resistance and achieve applications in anti-biofouling of 316L stainless steel (SS), a sulfated derivative of chitosan was deposited onto stainless steel surface by an electrochemical method. In detail, chitosan-catechol (CS-CT) was synthesised in the hydrochloric acid solution by the Mannich reaction and then electrodeposited on the surface of the polished 316L stainless steel. The chitosan-catechol deposited SS sample was further modified with maleic anhydride and sulfite. The grafting progress was monitored by FTIR, UV spectrophotometer and X-ray photoelectron spectroscopy. Hydrophilicity and corrosion resistance of modified SS were characterized by water contact angle measurements, Tafel curves and electrochemical impedance spectroscopy. The morphology of the SS surface before and after the modification was investigated by atomic force microscopy and scanning electron microscope. Further, the anti-biofouling performance in terms of the anti-adsorption protein and anti-bacteria effects of all modified SS samples were estimated, and the modified 316L exhibits the capability of lower protein adsorption and improved antibacterial effect.info:eu-repo/semantics/publishedVersio

    Determination of the Fermion Pair Size in a Resonantly Interacting Superfluid

    Full text link
    Fermionic superfluidity requires the formation of pairs. The actual size of these fermion pairs varies by orders of magnitude from the femtometer scale in neutron stars and nuclei to the micrometer range in conventional superconductors. Many properties of the superfluid depend on the pair size relative to the interparticle spacing. This is expressed in BCS-BEC crossover theories, describing the crossover from a Bardeen-Cooper-Schrieffer (BCS) type superfluid of loosely bound and large Cooper pairs to Bose-Einstein condensation (BEC) of tightly bound molecules. Such a crossover superfluid has been realized in ultracold atomic gases where high temperature superfluidity has been observed. The microscopic properties of the fermion pairs can be probed with radio-frequency (rf) spectroscopy. Previous work was difficult to interpret due to strong and not well understood final state interactions. Here we realize a new superfluid spin mixture where such interactions have negligible influence and present fermion-pair dissociation spectra that reveal the underlying pairing correlations. This allows us to determine the spectroscopic pair size in the resonantly interacting gas to be 2.6(2)/kF (kF is the Fermi wave number). The pairs are therefore smaller than the interparticle spacing and the smallest pairs observed in fermionic superfluids. This finding highlights the importance of small fermion pairs for superfluidity at high critical temperatures. We have also identified transitions from fermion pairs into bound molecular states and into many-body bound states in the case of strong final state interactions.Comment: 8 pages, 7 figures; Figures updated; New Figures added; Updated discussion of fit function

    Quasiparticle Spectrum of d-wave Superconductors in the Mixed State

    Full text link
    The quasiparticle spectrum of a two-dimensional d-wave superconductor in the mixed state, H_{c1} << H << H_{c2}, is studied both analytically and numerically using the linearized Bogoliubov-de Gennes equation. We consider various values of the "anisotropy ratio" v_F/v_Delta for the quasiparticle velocities at the Dirac points, and we examine the implications of symmetry. For a Bravais lattice of vortices, we find there is always an isolated energy-zero (Dirac point) at the center of the Brillouin zone, but for a non-Bravais lattice with two vortices per unit cell there is generally an energy gap. In both of these cases, the density of states should vanish at zero energy, in contrast with the semiclassical prediction of a constant density of states, though the latter may hold down to very low energies for large anisotropy ratios. This result is closely related to the particle-hole symmetry of the band structures in lattices with two vortices per unit cell. More complicated non-Bravais vortex lattice configurations with at least four vortices per unit cell can break the particle-hole symmetry of the linearized energy spectrum and lead to a finite density of states at zero energy.Comment: 16 pages, 14 figures, RevTe
    • 

    corecore