33 research outputs found

    Chromosome banding patterns of Saimiri Vanzolinii Ayres, 1985 (Primates, Cebidae)

    Get PDF

    American marsupials chromosomes: Why study them?

    Get PDF
    Marsupials, one of the three main groups of mammals, are only found in Australia and in the American continent. Studies performed in Australian marsupials have demonstrated the great potential provided by the group for the understanding of basic genetic mechanisms and chromosome evolution in mammals. Genetic studies in American marsupials are relatively scarce and cytogenetic data of most species are restricted to karyotype descriptions, usually without banding patterns. Nevertheless, the first marsupial genome sequenced was that of Monodelphis domestica, a South American species. The knowledge about mammalian genome evolution and function that resulted from studies on M. domestica is in sharp contrast with the lack of genetic data on most American marsupial species. Here, we present an overview of the chromosome studies performed in marsupials with emphasis on the South American species

    Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation

    Get PDF
    Background: Species generally have a fixed number of chromosomes in the cell nuclei while between-species differences are common and often pronounced. These differences could have evolved through multiple speciation events, each involving the fixation of a single chromosomal rearrangement. Alternatively, marked changes in the karyotype may be the consequence of within-species accumulation of multiple chromosomal fissions/fusions, resulting in highly polymorphic systems with the subsequent extinction of intermediate karyomorphs. Although this mechanism of chromosome number evolution is possible in theory, it has not been well documented. Results: We present the discovery of exceptional intraspecific variability in the karyotype of the widespread Eurasian butterfly Leptidea sinapis. We show that within this species the diploid chromosome number gradually decreases from 2n = 106 in Spain to 2n = 56 in eastern Kazakhstan, resulting in a 6000 km-wide cline that originated recently (8,500 to 31,000 years ago). Remarkably, intrapopulational chromosome number polymorphism exists, the chromosome number range overlaps between some populations separated by hundreds of kilometers, and chromosomal heterozygotes are abundant. We demonstrate that this karyotypic variability is intraspecific because in L. sinapis a broad geographical distribution is coupled with a homogenous morphological and genetic structure. Conclusions: The discovered system represents the first clearly documented case of explosive chromosome number evolution through intraspecific and intrapopulation accumulation of multiple chromosomal changes. Leptidea sinapis may be used as a model system for studying speciation by means of chromosomally-based suppressed recombination mechanisms, as well as clinal speciation, a process that is theoretically possible but difficult to document. The discovered cline seems to represent a narrow time-window of the very first steps of species formation linked to multiple chromosomal changes that have occurred explosively. This case offers a rare opportunity to study this process before drift, dispersal, selection, extinction and speciation erase the traces of microevolutionary events and just leave the final picture of a pronounced interspecific chromosomal difference

    Pericentric inversion events in karyotypic distinction of Brazilian lizards of genus Phyllopezus (Squamata, Gekkonidae) detected by chromosomal banding patterns

    No full text
    Cytogenetic investigations based on conventional and differential staining analysis (C-and replication R-banding and Ag-staining) were carried out on eight specimens of Phyllopezus periosus, 17 of P. pollicaris pollicaris, and one of P. pollicaris przewalskii collected from different localities of Brazil. P. periosus and P. p. pollicaris share the same diploid number of 2n = 40 chromosomes, and their karyotypes are very distinctive regarding to the number of biarmed and uniarmed chromosomes. After careful side-by-side comparison of R-banded chromosomes in both taxa, pronounced homology between, at least, eight pairs was revealed. The R-banding patterns allowed us to postulate that karyotype differentiation could be due to pericentric inversion events. P. p. przewalskii (2n = 38) exhibited a very similar karyotype to that found in P. p. pollicaris, except for the presence of one metacentric pair, which probably resulted from a Robertsonian rearrangement. Single and multiple pairs of NOR-bearing chromosomes, showing variation in number and location, were detected among the three forms of Phyllopezus. Similar C-banding patterns were found in P. periosus and P. p. pollicaris. Sex chromosomes were not positively identified
    corecore